{"title":"里奇流的对称性","authors":"Enrique López, Stylianos Dimas, Yuri Bozhkov","doi":"10.1515/anona-2023-0106","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries of Ricci flows\",\"authors\":\"Enrique López, Stylianos Dimas, Yuri Bozhkov\",\"doi\":\"10.1515/anona-2023-0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0106\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0106","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.