里奇流的对称性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Enrique López, Stylianos Dimas, Yuri Bozhkov
{"title":"里奇流的对称性","authors":"Enrique López, Stylianos Dimas, Yuri Bozhkov","doi":"10.1515/anona-2023-0106","DOIUrl":null,"url":null,"abstract":"Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries of Ricci flows\",\"authors\":\"Enrique López, Stylianos Dimas, Yuri Bozhkov\",\"doi\":\"10.1515/anona-2023-0106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0106\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anona-2023-0106","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们发现了n维流形上Ricci流的李点对称性,并引入了一种重新利用这些对称性来获得特定度量的李点对称性的方法。我们应用这种方法来检索爱因斯坦方程的李点对称性(被视为“静态”里奇流)和一些特定类型的感兴趣的度量,例如,在流形的弯曲积上。最后,我们利用所发现的对称性得到了所考虑的特定度量族的Ricci流的不变解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetries of Ricci flows
Abstract In the present work, we find the Lie point symmetries of the Ricci flow on an n -dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics. We apply this method to retrieve the Lie point symmetries of the Einstein equations (seen as a “static” Ricci flow) and of some particular types of metrics of interest, such as, on warped products of manifolds. Finally, we use the symmetries found to obtain invariant solutions of the Ricci flow for the particular families of metrics considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信