{"title":"基于机器学习和深度特征提取技术的BLDA-CSWDT自身免疫性甲状腺疾病风险预测模型","authors":"Nagavali Saka, S. Murali Krishna","doi":"10.1504/ijbet.2023.133791","DOIUrl":null,"url":null,"abstract":"Nowadays, different thyroid disorders are observed which are affecting the human population worldwide. Hence, to provide suitable treatment and be cost-consuming for the patients, an earlier diagnosis is required. To improve prediction, this paper proposed Bayes-linear discriminant analysis (B-LDA) and cuckoo search based weighted decision tree (CSWDT) models to predict the autoimmune thyroid risk assessment from the obtained dataset. Initially, after pre-processing, the features are extracted using the deep MLP model, and the significant features are fused by using the B-LDA model which overcomes the dimensionality reduction issue. Further, the classification is performed by using the optimised cuckoo search with a weighted decision tree model. In addition, K-fold cross-validation is performed and attains a better accuracy value of 99.5% in thyroid disease prediction.","PeriodicalId":51752,"journal":{"name":"International Journal of Biomedical Engineering and Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLDA-CSWDT autoimmune thyroid disease risks predictive model using machine learning and deep feature extraction techniques\",\"authors\":\"Nagavali Saka, S. Murali Krishna\",\"doi\":\"10.1504/ijbet.2023.133791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, different thyroid disorders are observed which are affecting the human population worldwide. Hence, to provide suitable treatment and be cost-consuming for the patients, an earlier diagnosis is required. To improve prediction, this paper proposed Bayes-linear discriminant analysis (B-LDA) and cuckoo search based weighted decision tree (CSWDT) models to predict the autoimmune thyroid risk assessment from the obtained dataset. Initially, after pre-processing, the features are extracted using the deep MLP model, and the significant features are fused by using the B-LDA model which overcomes the dimensionality reduction issue. Further, the classification is performed by using the optimised cuckoo search with a weighted decision tree model. In addition, K-fold cross-validation is performed and attains a better accuracy value of 99.5% in thyroid disease prediction.\",\"PeriodicalId\":51752,\"journal\":{\"name\":\"International Journal of Biomedical Engineering and Technology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbet.2023.133791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbet.2023.133791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
BLDA-CSWDT autoimmune thyroid disease risks predictive model using machine learning and deep feature extraction techniques
Nowadays, different thyroid disorders are observed which are affecting the human population worldwide. Hence, to provide suitable treatment and be cost-consuming for the patients, an earlier diagnosis is required. To improve prediction, this paper proposed Bayes-linear discriminant analysis (B-LDA) and cuckoo search based weighted decision tree (CSWDT) models to predict the autoimmune thyroid risk assessment from the obtained dataset. Initially, after pre-processing, the features are extracted using the deep MLP model, and the significant features are fused by using the B-LDA model which overcomes the dimensionality reduction issue. Further, the classification is performed by using the optimised cuckoo search with a weighted decision tree model. In addition, K-fold cross-validation is performed and attains a better accuracy value of 99.5% in thyroid disease prediction.
期刊介绍:
IJBET addresses cutting-edge research in the multi-disciplinary area of biomedical engineering and technology. Medical science incorporates scientific/technological advances combining to produce more accurate diagnoses, effective treatments with fewer side effects, and improved ability to prevent disease and provide superior-quality healthcare. A key field here is biomedical engineering/technology, offering a synthesis of physical, chemical, mathematical and computational sciences combined with engineering principles to enhance R&D in biology, medicine, behaviour, and health. Topics covered include Artificial organs Automated patient monitoring Advanced therapeutic and surgical devices Application of expert systems and AI to clinical decision making Biomaterials design Biomechanics of injury and wound healing Blood chemistry sensors Computer modelling of physiologic systems Design of optimal clinical laboratories Medical imaging systems Sports medicine.