{"title":"俯冲带碰撞板块间的应力状态与滑动","authors":"Emilia Assenova, Evgenia Kozhoukharova","doi":"10.61552/jme.2023.01.001","DOIUrl":null,"url":null,"abstract":"Understanding of friction is important for tribological processes ranging from engineering contact systems to the nonmechanical inorganic tribosystems of Earth’s seismo-tectonic zones. A common but little-studied case is the combination of interaction, sliding and counter-pressure (collision) between plates and rock blocks, which develops specific deformations and energy and material changes. Above friction processes depend on the geometry, the spatial relations between the crustal plates, their material, especially rheological properties, and the energy transformations. The subduction zone has been regarded as place of renewal processes of energy and material. The role of the intensive friction processes in the increase of temperature and pressure in the subduction zone is shown, and the resulting both internal, external deformations and material changes of the rock material. A hypothesis is presented for the formation of the so-called \"Deformation Arc\" observed in the Alps, the Chilean segment of the Andes and the Nepalese zone. A contribution to science represents the application of tribological principles in the interpretation of natural, in this case geotribological processes, which leads to mutual enrichment of both tribology and geology.","PeriodicalId":42984,"journal":{"name":"Journal of Materials and Engineering Structures","volume":"23 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress-State and Sliding Between Colliding Plates in the Subduction Zone\",\"authors\":\"Emilia Assenova, Evgenia Kozhoukharova\",\"doi\":\"10.61552/jme.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding of friction is important for tribological processes ranging from engineering contact systems to the nonmechanical inorganic tribosystems of Earth’s seismo-tectonic zones. A common but little-studied case is the combination of interaction, sliding and counter-pressure (collision) between plates and rock blocks, which develops specific deformations and energy and material changes. Above friction processes depend on the geometry, the spatial relations between the crustal plates, their material, especially rheological properties, and the energy transformations. The subduction zone has been regarded as place of renewal processes of energy and material. The role of the intensive friction processes in the increase of temperature and pressure in the subduction zone is shown, and the resulting both internal, external deformations and material changes of the rock material. A hypothesis is presented for the formation of the so-called \\\"Deformation Arc\\\" observed in the Alps, the Chilean segment of the Andes and the Nepalese zone. A contribution to science represents the application of tribological principles in the interpretation of natural, in this case geotribological processes, which leads to mutual enrichment of both tribology and geology.\",\"PeriodicalId\":42984,\"journal\":{\"name\":\"Journal of Materials and Engineering Structures\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials and Engineering Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61552/jme.2023.01.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials and Engineering Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61552/jme.2023.01.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Stress-State and Sliding Between Colliding Plates in the Subduction Zone
Understanding of friction is important for tribological processes ranging from engineering contact systems to the nonmechanical inorganic tribosystems of Earth’s seismo-tectonic zones. A common but little-studied case is the combination of interaction, sliding and counter-pressure (collision) between plates and rock blocks, which develops specific deformations and energy and material changes. Above friction processes depend on the geometry, the spatial relations between the crustal plates, their material, especially rheological properties, and the energy transformations. The subduction zone has been regarded as place of renewal processes of energy and material. The role of the intensive friction processes in the increase of temperature and pressure in the subduction zone is shown, and the resulting both internal, external deformations and material changes of the rock material. A hypothesis is presented for the formation of the so-called "Deformation Arc" observed in the Alps, the Chilean segment of the Andes and the Nepalese zone. A contribution to science represents the application of tribological principles in the interpretation of natural, in this case geotribological processes, which leads to mutual enrichment of both tribology and geology.