移动蓄热作为区域供热补充的经济分析

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Alois Resch, Harald Dehner
{"title":"移动蓄热作为区域供热补充的经济分析","authors":"Alois Resch, Harald Dehner","doi":"10.2478/rtuect-2023-0038","DOIUrl":null,"url":null,"abstract":"Abstract Urban areas are increasingly supplied by district heating networks (DHN) because this technology is reliable, provides easy handling for the customer and contributes to the required reduction of greenhouse gas emissions if it is operated from renewable sources. Waste heat from the industrial sector can serve as such, however, industrial plants are often not in the meaningful range of DHN, as they are mostly located in the periphery. For this reason, the application of mobile thermal energy storages (M-TES) is investigated by the present research work. M-TES systems are technically capable of exchanging heat between a DHN and heat sources or heat sinks, as previous studies have shown, but economic viability could not be reached with former energy prices. However, geopolitical incidents of 2022 resulted in massive fluctuations on the energy markets and unpredicted price increases. Therefore, this paper provides an updated analysis of M-TES, considering the premises of 2022. An economic model according to VDI2067 was developed for calculating the costs of transported heat for different storage technologies and materials. Moreover, transportation by a Diesel driven truck was compared to an electric driven one. The updated analysis yielded economic feasibility for specific M-TES configurations, achieving minimum heat costs of € 89.5 per MWh. This is equivalent to a reduction of 40.3 % related to the prices of conventional district heating in Austria by end of 2022.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"10 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Economic Analysis of Mobile Thermal Energy Storages as Complement to District Heating\",\"authors\":\"Alois Resch, Harald Dehner\",\"doi\":\"10.2478/rtuect-2023-0038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Urban areas are increasingly supplied by district heating networks (DHN) because this technology is reliable, provides easy handling for the customer and contributes to the required reduction of greenhouse gas emissions if it is operated from renewable sources. Waste heat from the industrial sector can serve as such, however, industrial plants are often not in the meaningful range of DHN, as they are mostly located in the periphery. For this reason, the application of mobile thermal energy storages (M-TES) is investigated by the present research work. M-TES systems are technically capable of exchanging heat between a DHN and heat sources or heat sinks, as previous studies have shown, but economic viability could not be reached with former energy prices. However, geopolitical incidents of 2022 resulted in massive fluctuations on the energy markets and unpredicted price increases. Therefore, this paper provides an updated analysis of M-TES, considering the premises of 2022. An economic model according to VDI2067 was developed for calculating the costs of transported heat for different storage technologies and materials. Moreover, transportation by a Diesel driven truck was compared to an electric driven one. The updated analysis yielded economic feasibility for specific M-TES configurations, achieving minimum heat costs of € 89.5 per MWh. This is equivalent to a reduction of 40.3 % related to the prices of conventional district heating in Austria by end of 2022.\",\"PeriodicalId\":46053,\"journal\":{\"name\":\"Environmental and Climate Technologies\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Climate Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/rtuect-2023-0038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

城市地区越来越多地采用区域供热网络(DHN),因为这种技术可靠,为客户提供方便的处理,并且如果使用可再生能源,有助于减少温室气体排放。来自工业部门的废热可以起到这样的作用,然而,工业工厂通常不在DHN的有意义范围内,因为它们大多位于外围。为此,本研究对移动蓄热系统的应用进行了探讨。正如之前的研究表明的那样,M-TES系统在技术上能够在DHN和热源或散热器之间交换热量,但在以前的能源价格下无法达到经济可行性。然而,2022年的地缘政治事件导致了能源市场的大幅波动和不可预测的价格上涨。因此,考虑到2022年的前提,本文对M-TES进行了更新分析。根据VDI2067开发了一个经济模型,用于计算不同储存技术和材料的热量传输成本。此外,用柴油驱动的卡车与电动驱动的卡车进行了比较。最新的分析得出了特定M-TES配置的经济可行性,实现了每兆瓦时89.5欧元的最低热成本。这相当于到2022年底奥地利传统区域供热的价格降低40.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economic Analysis of Mobile Thermal Energy Storages as Complement to District Heating
Abstract Urban areas are increasingly supplied by district heating networks (DHN) because this technology is reliable, provides easy handling for the customer and contributes to the required reduction of greenhouse gas emissions if it is operated from renewable sources. Waste heat from the industrial sector can serve as such, however, industrial plants are often not in the meaningful range of DHN, as they are mostly located in the periphery. For this reason, the application of mobile thermal energy storages (M-TES) is investigated by the present research work. M-TES systems are technically capable of exchanging heat between a DHN and heat sources or heat sinks, as previous studies have shown, but economic viability could not be reached with former energy prices. However, geopolitical incidents of 2022 resulted in massive fluctuations on the energy markets and unpredicted price increases. Therefore, this paper provides an updated analysis of M-TES, considering the premises of 2022. An economic model according to VDI2067 was developed for calculating the costs of transported heat for different storage technologies and materials. Moreover, transportation by a Diesel driven truck was compared to an electric driven one. The updated analysis yielded economic feasibility for specific M-TES configurations, achieving minimum heat costs of € 89.5 per MWh. This is equivalent to a reduction of 40.3 % related to the prices of conventional district heating in Austria by end of 2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信