优化化学传感器检测混合气体浓度的光谱特性

None Muthana Alboedam, None A. A. Al-Rubaiee
{"title":"优化化学传感器检测混合气体浓度的光谱特性","authors":"None Muthana Alboedam, None A. A. Al-Rubaiee","doi":"10.56801/mme987","DOIUrl":null,"url":null,"abstract":"Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Spectral Properties of the Chemical Sensor to Detect Concentrations of Gas Mixtures\",\"authors\":\"None Muthana Alboedam, None A. A. Al-Rubaiee\",\"doi\":\"10.56801/mme987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56801/mme987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/mme987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

监测芳烃对环境很重要,因为这些化学污染物无处不在。在等待能够检测极低水平碳氢化合物的强大传感器的同时,目前的研究展示了如何快速准确地识别每种纯气体混合物。对化学传感器数据建立去噪单元,并根据所提出的算法进行处理,实现匹配和标定。该方法可推广到其他重要的芳烃污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Spectral Properties of the Chemical Sensor to Detect Concentrations of Gas Mixtures
Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信