关于积分部分集合中元素的最大公因数的分布

IF 0.3 Q4 MATHEMATICS
Teerapat Srichan
{"title":"关于积分部分集合中元素的最大公因数的分布","authors":"Teerapat Srichan","doi":"10.12697/acutm.2023.27.04","DOIUrl":null,"url":null,"abstract":"It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"29 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the distribution of the greatest common divisor of the elements in integral part sets\",\"authors\":\"Teerapat Srichan\",\"doi\":\"10.12697/acutm.2023.27.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2023.27.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

当x→∞时,两个正整数n, m≤x为相对素数的概率趋于1/ζ(2) = 6/π2,这是一个经典的结果。在本文中,当n和m被限制为子序列,即Piatetski-Shapiro序列、Beatty序列和底函数集时,同样的结果仍然成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the distribution of the greatest common divisor of the elements in integral part sets
It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
33.30%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信