{"title":"关于积分部分集合中元素的最大公因数的分布","authors":"Teerapat Srichan","doi":"10.12697/acutm.2023.27.04","DOIUrl":null,"url":null,"abstract":"It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.","PeriodicalId":42426,"journal":{"name":"Acta et Commentationes Universitatis Tartuensis de Mathematica","volume":"29 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the distribution of the greatest common divisor of the elements in integral part sets\",\"authors\":\"Teerapat Srichan\",\"doi\":\"10.12697/acutm.2023.27.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.\",\"PeriodicalId\":42426,\"journal\":{\"name\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et Commentationes Universitatis Tartuensis de Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12697/acutm.2023.27.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et Commentationes Universitatis Tartuensis de Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12697/acutm.2023.27.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the distribution of the greatest common divisor of the elements in integral part sets
It is a classical result that the probability that two positive integers n, m ≤ x are relatively prime tends to 1/ζ(2) = 6/π2 as x → ∞. In this paper, the same result is still true when n and m are restricted to sub-sequences, i.e. Piatetski–Shapiro sequence, Beatty sequence and the floor function set.