随机需求车辆路径问题的求解算法

Masahiro Komatsu, Ryota Omori, Tetsuya Sato, Takayuki Shiina
{"title":"随机需求车辆路径问题的求解算法","authors":"Masahiro Komatsu, Ryota Omori, Tetsuya Sato, Takayuki Shiina","doi":"10.52731/ijskm.v7.i2.710","DOIUrl":null,"url":null,"abstract":"The vehicle routing problem (VRP) determines a delivery route that minimizes the delivery cost. In this study, we consider the stochastic VRP with uncertainty and consider the variation in customer demand, which may cause a shortage of products during delivery. In this case, delivery vehicles have to return to the depot and replenish the products. We consider a model that minimizes the sum of the additional cost caused by the shortage and the normal delivery cost.","PeriodicalId":487422,"journal":{"name":"International journal of service and knowledge management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution Algorithm for Vehicle Routing Problem with Stochastic Demand\",\"authors\":\"Masahiro Komatsu, Ryota Omori, Tetsuya Sato, Takayuki Shiina\",\"doi\":\"10.52731/ijskm.v7.i2.710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The vehicle routing problem (VRP) determines a delivery route that minimizes the delivery cost. In this study, we consider the stochastic VRP with uncertainty and consider the variation in customer demand, which may cause a shortage of products during delivery. In this case, delivery vehicles have to return to the depot and replenish the products. We consider a model that minimizes the sum of the additional cost caused by the shortage and the normal delivery cost.\",\"PeriodicalId\":487422,\"journal\":{\"name\":\"International journal of service and knowledge management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of service and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52731/ijskm.v7.i2.710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of service and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52731/ijskm.v7.i2.710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

车辆路线问题(vehicle routing problem, VRP)确定了一条运输成本最小的运输路线。在本研究中,我们考虑具有不确定性的随机VRP,并考虑客户需求的变化,这可能导致产品在交付过程中出现短缺。在这种情况下,运输车辆必须返回仓库并补充产品。我们考虑一个模型,使缺货造成的额外成本和正常交货成本的总和最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution Algorithm for Vehicle Routing Problem with Stochastic Demand
The vehicle routing problem (VRP) determines a delivery route that minimizes the delivery cost. In this study, we consider the stochastic VRP with uncertainty and consider the variation in customer demand, which may cause a shortage of products during delivery. In this case, delivery vehicles have to return to the depot and replenish the products. We consider a model that minimizes the sum of the additional cost caused by the shortage and the normal delivery cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信