{"title":"非正曲率的适当近距离","authors":"Camille Horbez, Jingyin Huang, Jean Lécureux","doi":"10.1353/ajm.2023.a907700","DOIUrl":null,"url":null,"abstract":"abstract: Proper proximality of a countable group is a notion that was introduced by Boutonnet, Ioana and Peterson as a tool to study rigidity properties of certain von Neumann algebras associated to groups or ergodic group actions. In the present paper, we establish the proper proximality of many groups acting on nonpositively curved spaces. First, these include many countable groups $G$ acting properly nonelementarily by isometries on a proper ${\\rm CAT}(0)$ space $X$. More precisely, proper proximality holds in the presence of rank one isometries or when $X$ is a locally thick affine building with a minimal $G$-action. As a consequence of Rank Rigidity, we derive the proper proximality of all countable nonelementary ${\\rm CAT}(0)$ cubical groups, and of all countable groups acting properly cocompactly nonelementarily by isometries on either a Hadamard manifold with no Euclidean factor, or on a $2$-dimensional piecewise Euclidean ${\\rm CAT}(0)$ simplicial complex. Second, we establish the proper proximality of many hierarchically hyperbolic groups. These include the mapping class groups of connected orientable finite-type boundaryless surfaces (apart from a few low-complexity cases), thus answering a question raised by Boutonnet, Ioana, and Peterson. We also prove the proper proximality of all subgroups acting nonelementarily on the curve graph. In view of work of Boutonnet, Ioana and Peterson, our results have applications to structural and rigidity results for von Neumann algebras associated to all the above groups and their ergodic actions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Proper proximality in non-positive curvature\",\"authors\":\"Camille Horbez, Jingyin Huang, Jean Lécureux\",\"doi\":\"10.1353/ajm.2023.a907700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract: Proper proximality of a countable group is a notion that was introduced by Boutonnet, Ioana and Peterson as a tool to study rigidity properties of certain von Neumann algebras associated to groups or ergodic group actions. In the present paper, we establish the proper proximality of many groups acting on nonpositively curved spaces. First, these include many countable groups $G$ acting properly nonelementarily by isometries on a proper ${\\\\rm CAT}(0)$ space $X$. More precisely, proper proximality holds in the presence of rank one isometries or when $X$ is a locally thick affine building with a minimal $G$-action. As a consequence of Rank Rigidity, we derive the proper proximality of all countable nonelementary ${\\\\rm CAT}(0)$ cubical groups, and of all countable groups acting properly cocompactly nonelementarily by isometries on either a Hadamard manifold with no Euclidean factor, or on a $2$-dimensional piecewise Euclidean ${\\\\rm CAT}(0)$ simplicial complex. Second, we establish the proper proximality of many hierarchically hyperbolic groups. These include the mapping class groups of connected orientable finite-type boundaryless surfaces (apart from a few low-complexity cases), thus answering a question raised by Boutonnet, Ioana, and Peterson. We also prove the proper proximality of all subgroups acting nonelementarily on the curve graph. In view of work of Boutonnet, Ioana and Peterson, our results have applications to structural and rigidity results for von Neumann algebras associated to all the above groups and their ergodic actions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a907700\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a907700","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
abstract: Proper proximality of a countable group is a notion that was introduced by Boutonnet, Ioana and Peterson as a tool to study rigidity properties of certain von Neumann algebras associated to groups or ergodic group actions. In the present paper, we establish the proper proximality of many groups acting on nonpositively curved spaces. First, these include many countable groups $G$ acting properly nonelementarily by isometries on a proper ${\rm CAT}(0)$ space $X$. More precisely, proper proximality holds in the presence of rank one isometries or when $X$ is a locally thick affine building with a minimal $G$-action. As a consequence of Rank Rigidity, we derive the proper proximality of all countable nonelementary ${\rm CAT}(0)$ cubical groups, and of all countable groups acting properly cocompactly nonelementarily by isometries on either a Hadamard manifold with no Euclidean factor, or on a $2$-dimensional piecewise Euclidean ${\rm CAT}(0)$ simplicial complex. Second, we establish the proper proximality of many hierarchically hyperbolic groups. These include the mapping class groups of connected orientable finite-type boundaryless surfaces (apart from a few low-complexity cases), thus answering a question raised by Boutonnet, Ioana, and Peterson. We also prove the proper proximality of all subgroups acting nonelementarily on the curve graph. In view of work of Boutonnet, Ioana and Peterson, our results have applications to structural and rigidity results for von Neumann algebras associated to all the above groups and their ergodic actions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.