{"title":"函数域上正维的Tate对偶性","authors":"Zev Rosengarten","doi":"10.1090/memo/1444","DOIUrl":null,"url":null,"abstract":"We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Tate Duality In Positive Dimension over Function Fields\",\"authors\":\"Zev Rosengarten\",\"doi\":\"10.1090/memo/1444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 10
摘要
我们将局部和全局域上有限离散Galois模的经典对偶结果(局部对偶,九项精确序列等)推广到有限类型的所有仿射交换群方案,建立在Česnavičius最近的工作(“Poitou-Tate without restrictions on the order,”2015)的基础上,将这些结果推广到所有有限交换群方案。我们主要集中在较困难的函数域设置上,并在此过程中对数字域的情况做了一些说明。
Tate Duality In Positive Dimension over Function Fields
We extend the classical duality results of Poitou and Tate for finite discrete Galois modules over local and global fields (local duality, nine-term exact sequence, etc.) to all affine commutative group schemes of finite type, building on the recent work of Česnavičius (“Poitou-Tate without restrictions on the order,” 2015) extending these results to all finite commutative group schemes. We concentrate mainly on the more difficult function field setting, giving some remarks about the number field case along the way.