{"title":"吉布斯过程的不一致耦合及其在泊松近似中的应用","authors":"Moritz Otto","doi":"10.1214/22-aap1916","DOIUrl":null,"url":null,"abstract":"We discuss a thinning and an embedding procedure to construct finite Gibbs processes with a given Papangelou intensity. Extending the approach of Hofer-Temmel (Electron. J. Probab. 24 (2019) 1–22) and Hofer-Temmel and Houdebert (Stochastic Process. Appl. 129 (2019) 3922–3940) we will use this to couple two finite Gibbs processes with different boundary conditions. As one application we will establish Poisson approximation of point processes derived from certain infinite volume Gibbs processes via dependent thinning. As another application we shall discuss empty space probabilities of certain Gibbs processes.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"100 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Disagreement coupling of Gibbs processes with an application to Poisson approximation\",\"authors\":\"Moritz Otto\",\"doi\":\"10.1214/22-aap1916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a thinning and an embedding procedure to construct finite Gibbs processes with a given Papangelou intensity. Extending the approach of Hofer-Temmel (Electron. J. Probab. 24 (2019) 1–22) and Hofer-Temmel and Houdebert (Stochastic Process. Appl. 129 (2019) 3922–3940) we will use this to couple two finite Gibbs processes with different boundary conditions. As one application we will establish Poisson approximation of point processes derived from certain infinite volume Gibbs processes via dependent thinning. As another application we shall discuss empty space probabilities of certain Gibbs processes.\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1916\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1916","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Disagreement coupling of Gibbs processes with an application to Poisson approximation
We discuss a thinning and an embedding procedure to construct finite Gibbs processes with a given Papangelou intensity. Extending the approach of Hofer-Temmel (Electron. J. Probab. 24 (2019) 1–22) and Hofer-Temmel and Houdebert (Stochastic Process. Appl. 129 (2019) 3922–3940) we will use this to couple two finite Gibbs processes with different boundary conditions. As one application we will establish Poisson approximation of point processes derived from certain infinite volume Gibbs processes via dependent thinning. As another application we shall discuss empty space probabilities of certain Gibbs processes.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.