具有不同离散度和依赖参数的多元索赔数回归模型

Himchan Jeong, George Tzougas, Tsz Chai Fung
{"title":"具有不同离散度和依赖参数的多元索赔数回归模型","authors":"Himchan Jeong, George Tzougas, Tsz Chai Fung","doi":"10.1093/jrsssa/qnac010","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to present a regression model for multivariate claim frequency data with dependence structures across the claim count responses, which may be of different sign and range, and overdispersion from the unobserved heterogeneity due to systematic effects in the data. For illustrative purposes, we consider the bivariate Poisson-lognormal regression model with varying dispersion. Maximum likelihood estimation of the model parameters is achieved through a novel Monte Carlo expectation–maximization algorithm, which is shown to have a satisfactory performance when we exemplify our approach to Local Government Property Insurance Fund data from the state of Wisconsin.","PeriodicalId":49985,"journal":{"name":"Journal of the Royal Statistical Society","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multivariate claim count regression model with varying dispersion and dependence parameters\",\"authors\":\"Himchan Jeong, George Tzougas, Tsz Chai Fung\",\"doi\":\"10.1093/jrsssa/qnac010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to present a regression model for multivariate claim frequency data with dependence structures across the claim count responses, which may be of different sign and range, and overdispersion from the unobserved heterogeneity due to systematic effects in the data. For illustrative purposes, we consider the bivariate Poisson-lognormal regression model with varying dispersion. Maximum likelihood estimation of the model parameters is achieved through a novel Monte Carlo expectation–maximization algorithm, which is shown to have a satisfactory performance when we exemplify our approach to Local Government Property Insurance Fund data from the state of Wisconsin.\",\"PeriodicalId\":49985,\"journal\":{\"name\":\"Journal of the Royal Statistical Society\",\"volume\":\"296 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Royal Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jrsssa/qnac010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jrsssa/qnac010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文的目的是建立一个多元索赔频率数据的回归模型,该模型具有跨索赔计数响应的依赖结构,这些结构可能具有不同的符号和范围,并且由于数据中的系统效应而导致未观察到的异质性过度分散。为了说明问题,我们考虑具有不同离散度的二元泊松-对数正态回归模型。模型参数的最大似然估计是通过一种新颖的蒙特卡罗期望最大化算法实现的,当我们以威斯康星州的地方政府财产保险基金数据为例时,该算法显示出令人满意的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariate claim count regression model with varying dispersion and dependence parameters
Abstract The aim of this paper is to present a regression model for multivariate claim frequency data with dependence structures across the claim count responses, which may be of different sign and range, and overdispersion from the unobserved heterogeneity due to systematic effects in the data. For illustrative purposes, we consider the bivariate Poisson-lognormal regression model with varying dispersion. Maximum likelihood estimation of the model parameters is achieved through a novel Monte Carlo expectation–maximization algorithm, which is shown to have a satisfactory performance when we exemplify our approach to Local Government Property Insurance Fund data from the state of Wisconsin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信