Noval Lilansa, Muhammad Nursyam Rizal, Pipit Anggraeni, Nur Jamiludin Ramadhan
{"title":"实现了多机器人系统形成的共识算法和领导-随从算法","authors":"Noval Lilansa, Muhammad Nursyam Rizal, Pipit Anggraeni, Nur Jamiludin Ramadhan","doi":"10.22441/sinergi.2023.1.006","DOIUrl":null,"url":null,"abstract":"Robot technology has recently been applied to many applications to help human activities. Mobile Robot is one of the most flexible robot technology. This research uses a mobile robot designed using an omnidirectional wheel for the movement mechanism. Coordination and control of multi-robots can be assigned to perform any task from a different kind of field. Therefore, this paper aims to develop a multi-robot system to form a formation to do the task. The multi-robot system consists of three units Mobile Robot. The formation system will be built based on a coordinate point determined by a consensus point. The leader-follower topology is used to determine the orientation of the robot. ROS (Robot Operating System) is used as middleware to create a multi-robot system. The Open Base package in Gazebo Simulator is also used to simulate the movement of the multi-robot. From three test scenarios, this research results show that all the robots can do and follow the tasks simulated in the Gazebo with an average accuracy of 88.14%. Furthermore, no feedback from the robot to the Gazebo Simulator affects the robot's accuracy average below 90%.","PeriodicalId":31051,"journal":{"name":"Jurnal Ilmiah SINERGI","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation consensus algorithm and leader-follower of multi-robot system formation\",\"authors\":\"Noval Lilansa, Muhammad Nursyam Rizal, Pipit Anggraeni, Nur Jamiludin Ramadhan\",\"doi\":\"10.22441/sinergi.2023.1.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robot technology has recently been applied to many applications to help human activities. Mobile Robot is one of the most flexible robot technology. This research uses a mobile robot designed using an omnidirectional wheel for the movement mechanism. Coordination and control of multi-robots can be assigned to perform any task from a different kind of field. Therefore, this paper aims to develop a multi-robot system to form a formation to do the task. The multi-robot system consists of three units Mobile Robot. The formation system will be built based on a coordinate point determined by a consensus point. The leader-follower topology is used to determine the orientation of the robot. ROS (Robot Operating System) is used as middleware to create a multi-robot system. The Open Base package in Gazebo Simulator is also used to simulate the movement of the multi-robot. From three test scenarios, this research results show that all the robots can do and follow the tasks simulated in the Gazebo with an average accuracy of 88.14%. Furthermore, no feedback from the robot to the Gazebo Simulator affects the robot's accuracy average below 90%.\",\"PeriodicalId\":31051,\"journal\":{\"name\":\"Jurnal Ilmiah SINERGI\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah SINERGI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22441/sinergi.2023.1.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah SINERGI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/sinergi.2023.1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation consensus algorithm and leader-follower of multi-robot system formation
Robot technology has recently been applied to many applications to help human activities. Mobile Robot is one of the most flexible robot technology. This research uses a mobile robot designed using an omnidirectional wheel for the movement mechanism. Coordination and control of multi-robots can be assigned to perform any task from a different kind of field. Therefore, this paper aims to develop a multi-robot system to form a formation to do the task. The multi-robot system consists of three units Mobile Robot. The formation system will be built based on a coordinate point determined by a consensus point. The leader-follower topology is used to determine the orientation of the robot. ROS (Robot Operating System) is used as middleware to create a multi-robot system. The Open Base package in Gazebo Simulator is also used to simulate the movement of the multi-robot. From three test scenarios, this research results show that all the robots can do and follow the tasks simulated in the Gazebo with an average accuracy of 88.14%. Furthermore, no feedback from the robot to the Gazebo Simulator affects the robot's accuracy average below 90%.