强人工智能机器人生成的一阶逻辑

{"title":"强人工智能机器人生成的一阶逻辑","authors":"","doi":"10.33140/amlai.04.01.03","DOIUrl":null,"url":null,"abstract":"Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. We consider the robot’s four-levels knowledge structure: The syntax level of particular natural language (Italian, French, etc..), two universal language levels: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure level which universally represents the composite mining of FOL formulae grounded on the last robot’s neuro system level. Therefore, this paper we consider the intentional First Order Logic as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property","PeriodicalId":377073,"journal":{"name":"Advances in Machine Learning & Artificial Intelligence","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intentional First Order Logic for Strong-AI Generation of Robots\",\"authors\":\"\",\"doi\":\"10.33140/amlai.04.01.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. We consider the robot’s four-levels knowledge structure: The syntax level of particular natural language (Italian, French, etc..), two universal language levels: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure level which universally represents the composite mining of FOL formulae grounded on the last robot’s neuro system level. Therefore, this paper we consider the intentional First Order Logic as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property\",\"PeriodicalId\":377073,\"journal\":{\"name\":\"Advances in Machine Learning & Artificial Intelligence\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Machine Learning & Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/amlai.04.01.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Machine Learning & Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/amlai.04.01.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经符号人工智能试图以一种互补的方式整合神经和符号架构,以解决各自的优势和劣势,以支持能够推理、学习和认知建模的强大人工智能。我们考虑机器人的四层知识结构:特定自然语言(意大利语、法语等)的语法层,两个通用语言层:语义逻辑结构(基于FOL的虚拟谓词和逻辑连接词),以及相应的概念PRP结构层,该结构层普遍代表基于最后一个机器人的神经系统层的FOL公式的复合挖掘。因此,本文将有意识的一阶逻辑视为现代机器人的符号结构,能够使用自然语言与人类进行交流,并具有自我参考和抽象语言特性对自己的知识进行推理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intentional First Order Logic for Strong-AI Generation of Robots
Neuro-symbolic AI attempts to integrate neural and symbolic architectures in a manner that addresses strengths and weaknesses of each, in a complementary fashion, in order to support robust strong AI capable of reasoning, learning, and cognitive modeling. We consider the robot’s four-levels knowledge structure: The syntax level of particular natural language (Italian, French, etc..), two universal language levels: its semantic logic structure (based on virtual predicates of FOL and logic connectives), and its corresponding conceptual PRP structure level which universally represents the composite mining of FOL formulae grounded on the last robot’s neuro system level. Therefore, this paper we consider the intentional First Order Logic as a symbolic architecture of modern robots, able to use natural languages to communicate with humans and to reason about their own knowledge with self-reference and abstraction language property
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信