前馈神经网络识别量子上下文的不确定性

Jan Wasilewski, Tomasz Paterek, Karol Horodecki
{"title":"前馈神经网络识别量子上下文的不确定性","authors":"Jan Wasilewski, Tomasz Paterek, Karol Horodecki","doi":"10.1088/1751-8121/acfd6b","DOIUrl":null,"url":null,"abstract":"Abstract The usual figure of merit characterizing the performance of neural networks applied to problems in the quantum domain is their accuracy, being the probability of a correct answer on a previously unseen input. Here we append this parameter with the uncertainty of the prediction, characterizing the degree of confidence in the answer. A powerful technique for estimating uncertainty is provided by Bayesian neural networks (BNNs). We first give simple illustrative examples of advantages brought forward by BNNs, out of which we wish to highlight their ability of reliable uncertainty estimation even after training with biased datasets. Then we apply BNNs to the problem of recognition of quantum contextuality, which shows that the uncertainty itself is an independent parameter identifying the chance of misclassification of contextuality.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty of feed forward neural networks recognizing quantum contextuality\",\"authors\":\"Jan Wasilewski, Tomasz Paterek, Karol Horodecki\",\"doi\":\"10.1088/1751-8121/acfd6b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The usual figure of merit characterizing the performance of neural networks applied to problems in the quantum domain is their accuracy, being the probability of a correct answer on a previously unseen input. Here we append this parameter with the uncertainty of the prediction, characterizing the degree of confidence in the answer. A powerful technique for estimating uncertainty is provided by Bayesian neural networks (BNNs). We first give simple illustrative examples of advantages brought forward by BNNs, out of which we wish to highlight their ability of reliable uncertainty estimation even after training with biased datasets. Then we apply BNNs to the problem of recognition of quantum contextuality, which shows that the uncertainty itself is an independent parameter identifying the chance of misclassification of contextuality.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfd6b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfd6b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述神经网络应用于量子领域问题的性能的通常指标是它们的准确性,即在先前未见过的输入上得到正确答案的概率。在这里,我们将该参数与预测的不确定性附加在一起,以表征对答案的置信度。贝叶斯神经网络(BNNs)为估计不确定性提供了一种强大的技术。我们首先给出了简单的例子来说明bnn带来的优势,从中我们希望强调它们即使在使用有偏差的数据集训练后也能进行可靠的不确定性估计的能力。然后将bnn应用于量子上下文识别问题,结果表明不确定性本身是识别上下文错误分类几率的独立参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty of feed forward neural networks recognizing quantum contextuality
Abstract The usual figure of merit characterizing the performance of neural networks applied to problems in the quantum domain is their accuracy, being the probability of a correct answer on a previously unseen input. Here we append this parameter with the uncertainty of the prediction, characterizing the degree of confidence in the answer. A powerful technique for estimating uncertainty is provided by Bayesian neural networks (BNNs). We first give simple illustrative examples of advantages brought forward by BNNs, out of which we wish to highlight their ability of reliable uncertainty estimation even after training with biased datasets. Then we apply BNNs to the problem of recognition of quantum contextuality, which shows that the uncertainty itself is an independent parameter identifying the chance of misclassification of contextuality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信