{"title":"第二价格拍卖节奏的复杂性","authors":"Xi Chen, Christian Kroer, Rachitesh Kumar","doi":"10.1287/moor.2022.0009","DOIUrl":null,"url":null,"abstract":"Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction markets. Oper. Res. 70(2):963–989]. As a consequence of our hardness result, we show that the tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities. Funding: This work was supported by National Science Foundation (CCF-1703925, IIS-1838154).","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"11 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of Pacing for Second-Price Auctions\",\"authors\":\"Xi Chen, Christian Kroer, Rachitesh Kumar\",\"doi\":\"10.1287/moor.2022.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction markets. Oper. Res. 70(2):963–989]. As a consequence of our hardness result, we show that the tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities. Funding: This work was supported by National Science Foundation (CCF-1703925, IIS-1838154).\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/moor.2022.0009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
预算限制在在线广告拍卖中无处不在。为了管理这些限制条件并平衡拍卖的支出,竞标者(或代表他们的平台)通常采用节奏:每个竞标者被分配一个介于0到1之间的节奏乘数,她对每个项目的出价被这个节奏乘数相乘。这自然产生了一个博弈,在这个博弈中,每个竞标者策略性地选择一个乘数。在这款游戏中,适当的平衡概念便是节奏平衡。在这项工作中,我们表明,寻找一个近似的节奏平衡的问题是ppad完备的第二价格拍卖。这解决了Conitzer等人的一个开放性问题[Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a)]。③。研究》70(2):963 - 989]。由于我们的硬结果,我们证明了Borgs等人引入的t式预算管理动态[Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M(2007)在线广告拍卖中的出价优化动态]。第十六节Conf. World Wide Web (ACM, New York), 531-540]不太可能有效地汇聚到重复的二次价格拍卖中。这反驳了Borgs等人的一个猜想[Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M(2007)在线广告拍卖中的出价优化动力学。]第十六节[Conf. World Wide Web (ACM, New York), 531-540],在复杂性类PPAD不等于p的假设下,我们的硬度结果也意味着存在供应意识市场均衡的改进,这很难用简单的线性效用来计算。基金资助:国家自然科学基金(CCF-1703925, IIS-1838154)资助。
The Complexity of Pacing for Second-Price Auctions
Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction markets. Oper. Res. 70(2):963–989]. As a consequence of our hardness result, we show that the tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities. Funding: This work was supported by National Science Foundation (CCF-1703925, IIS-1838154).
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.