Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater
{"title":"揭示多孔介质中流体流动的复杂动力学:粘度、孔隙度和惯性对流体运动的影响","authors":"Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater","doi":"10.1142/s0218348x23402028","DOIUrl":null,"url":null,"abstract":"This study investigates novel solitary wave solutions of the Gilson–Pickering ([Formula: see text]) equation, which is a model that describes the motion of a fluid in a porous medium. An analytical scheme is applied to construct these solutions, utilizing the extended Khater method in conjunction with the homogenous balance technique. The derived expressions for the solitary wave solutions are exact and are presented in terms of hyperbolic functions. The [Formula: see text] equation is valuable for a wide range of applications, including oil and gas reservoir engineering, groundwater flow, and flow in biological tissues. Additionally, this model is employed to describe the behavior of waves in various physical systems such as fluids and plasmas. Specifically, it models the propagation of dispersive waves in a media that exhibits both dispersion and dissipation. To ensure the accuracy of the constructed solutions, a numerical scheme is employed. The properties of the solitary wave solutions are analyzed, and their physical implications are explored. The results of this investigation reveal a rich variety of solitary wave solutions that exhibit interesting behaviors, including oscillatory and non-oscillatory behavior, which are elucidated through various types of distinct graphs. Consequently, this study provides significant insights into the behavior of fluid flow in porous media and its applications in various fields, including oil and gas reservoir engineering and groundwater flow modeling. The analytical and numerical methods employed in this investigation demonstrate their potential for studying nonlinear evolution equations and their applications in the physical sciences.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"72 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling the Complex Dynamics of Fluid Flow in Porous Media: Effects of Viscosity, Porosity, and Inertia on the Motion of Fluids\",\"authors\":\"Raghda A. M. Attia, Suleman H. Alfalqi, Jameel F. Alzaidi, Mostafa M. A. Khater\",\"doi\":\"10.1142/s0218348x23402028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates novel solitary wave solutions of the Gilson–Pickering ([Formula: see text]) equation, which is a model that describes the motion of a fluid in a porous medium. An analytical scheme is applied to construct these solutions, utilizing the extended Khater method in conjunction with the homogenous balance technique. The derived expressions for the solitary wave solutions are exact and are presented in terms of hyperbolic functions. The [Formula: see text] equation is valuable for a wide range of applications, including oil and gas reservoir engineering, groundwater flow, and flow in biological tissues. Additionally, this model is employed to describe the behavior of waves in various physical systems such as fluids and plasmas. Specifically, it models the propagation of dispersive waves in a media that exhibits both dispersion and dissipation. To ensure the accuracy of the constructed solutions, a numerical scheme is employed. The properties of the solitary wave solutions are analyzed, and their physical implications are explored. The results of this investigation reveal a rich variety of solitary wave solutions that exhibit interesting behaviors, including oscillatory and non-oscillatory behavior, which are elucidated through various types of distinct graphs. Consequently, this study provides significant insights into the behavior of fluid flow in porous media and its applications in various fields, including oil and gas reservoir engineering and groundwater flow modeling. The analytical and numerical methods employed in this investigation demonstrate their potential for studying nonlinear evolution equations and their applications in the physical sciences.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23402028\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23402028","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Unraveling the Complex Dynamics of Fluid Flow in Porous Media: Effects of Viscosity, Porosity, and Inertia on the Motion of Fluids
This study investigates novel solitary wave solutions of the Gilson–Pickering ([Formula: see text]) equation, which is a model that describes the motion of a fluid in a porous medium. An analytical scheme is applied to construct these solutions, utilizing the extended Khater method in conjunction with the homogenous balance technique. The derived expressions for the solitary wave solutions are exact and are presented in terms of hyperbolic functions. The [Formula: see text] equation is valuable for a wide range of applications, including oil and gas reservoir engineering, groundwater flow, and flow in biological tissues. Additionally, this model is employed to describe the behavior of waves in various physical systems such as fluids and plasmas. Specifically, it models the propagation of dispersive waves in a media that exhibits both dispersion and dissipation. To ensure the accuracy of the constructed solutions, a numerical scheme is employed. The properties of the solitary wave solutions are analyzed, and their physical implications are explored. The results of this investigation reveal a rich variety of solitary wave solutions that exhibit interesting behaviors, including oscillatory and non-oscillatory behavior, which are elucidated through various types of distinct graphs. Consequently, this study provides significant insights into the behavior of fluid flow in porous media and its applications in various fields, including oil and gas reservoir engineering and groundwater flow modeling. The analytical and numerical methods employed in this investigation demonstrate their potential for studying nonlinear evolution equations and their applications in the physical sciences.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.