局部分数阶修正等宽- burgers方程在Cantor集上的新精确解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kang-Jia Wang
{"title":"局部分数阶修正等宽- burgers方程在Cantor集上的新精确解","authors":"Kang-Jia Wang","doi":"10.1142/s0218348x23501116","DOIUrl":null,"url":null,"abstract":"This study proposes a new fractal modified equal width-Burgers equation (MEWBE) with the local fractional derivative (LFD) for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, the [Formula: see text] and [Formula: see text] functions, are derived for constructing the auxiliary function to seek the non-differentiable (ND) exact solutions. And 16 groups of the ND exact solutions are successfully established. The solutions on the CS are depicted graphically to interpret the nonlinear dynamic behaviors. Furthermore, the comparative results of the fractal MEWBE and the classical MEWBE are also discussed. The obtained results confirm that the proposed method is effective and powerful, and can provide a promising way to find the ND exact solutions of the local fractional PDEs.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New exact solutions of the local fractional modified equal width-Burgers equation on the Cantor sets\",\"authors\":\"Kang-Jia Wang\",\"doi\":\"10.1142/s0218348x23501116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a new fractal modified equal width-Burgers equation (MEWBE) with the local fractional derivative (LFD) for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, the [Formula: see text] and [Formula: see text] functions, are derived for constructing the auxiliary function to seek the non-differentiable (ND) exact solutions. And 16 groups of the ND exact solutions are successfully established. The solutions on the CS are depicted graphically to interpret the nonlinear dynamic behaviors. Furthermore, the comparative results of the fractal MEWBE and the classical MEWBE are also discussed. The obtained results confirm that the proposed method is effective and powerful, and can provide a promising way to find the ND exact solutions of the local fractional PDEs.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501116\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501116","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

本文首次提出了一个新的具有局部分数阶导数的分形修正等宽- burgers方程(MEWBE)。通过定义Cantor集(CS)上的Mittag-Leffler函数(MLF),导出了两个特殊函数,即[公式:见文]和[公式:见文]函数,用于构造辅助函数以求不可微(ND)精确解。成功建立了16组ND精确解。图形化地描述了CS上的解,以解释非线性动力学行为。此外,还讨论了分形MEWBE与经典MEWBE的对比结果。结果表明,该方法是有效的,为寻找局部分数阶偏微分方程的ND精确解提供了一种有希望的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New exact solutions of the local fractional modified equal width-Burgers equation on the Cantor sets
This study proposes a new fractal modified equal width-Burgers equation (MEWBE) with the local fractional derivative (LFD) for the first time. By defining the Mittag-Leffler function (MLF) on the Cantor set (CS), two special functions, namely, the [Formula: see text] and [Formula: see text] functions, are derived for constructing the auxiliary function to seek the non-differentiable (ND) exact solutions. And 16 groups of the ND exact solutions are successfully established. The solutions on the CS are depicted graphically to interpret the nonlinear dynamic behaviors. Furthermore, the comparative results of the fractal MEWBE and the classical MEWBE are also discussed. The obtained results confirm that the proposed method is effective and powerful, and can provide a promising way to find the ND exact solutions of the local fractional PDEs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信