Silvia Trevisan, Syed Safeer Mehdi Shamsi, Simone Maccarini, Stefano Barberis, Rafael Guédez
{"title":"基于二氧化碳的工业用热电联产系统的技术经济评价","authors":"Silvia Trevisan, Syed Safeer Mehdi Shamsi, Simone Maccarini, Stefano Barberis, Rafael Guédez","doi":"10.1115/1.4063418","DOIUrl":null,"url":null,"abstract":"Abstract The industrial sector is a major source of wealth, producing about one-quarter of the global gross product. However, industry is also a major emitter of CO2 and it represents a key challenge toward achieving the worldwide CO2 emission reduction targets. Nowadays, about 22% of the overall energy demand is heating for the industrial sector, generating about 40% of the global CO2 emissions. Additionally, 30% of the final energy demand of the industrial sector is electricity. Solutions to decarbonize the industrial sector are needed. This work presents the techno-economic assessment of four different molten salts-based power-to-heat-to-heat and power solutions aiming at decarbonizing the industrial sector, requiring medium temperature heat. The systems are studied under different electric markets. Dispatch strategies and system sizing are identified to ensure optimal techno-economic performance. The main performance indicators investigated are the levelized cost of heat and electricity (LCoH and LCoE), the operational expenditure, and the attainable savings with respect to alternative business as usual solutions. The results highlight that the proposed system can be cost-competitive, particularly in markets characterized by low electricity prices and high daily price fluctuations, such as Finland. In these locations, LCoE as low as 100 €/MWh and LCoH lower than 55 €/MWh can be attained by the base system configuration. The introduction of high temperature heat pumps can provide further LCoH reduction of about 50%. This study sets the ground for further power-to-heat-to-heat and power techno-economic investigations addressing different industrial sectors and identifies main system design strategies.","PeriodicalId":15685,"journal":{"name":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","volume":"24 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic Assessment of CO2-Based Power to Heat to Power Systems for Industrial Applications\",\"authors\":\"Silvia Trevisan, Syed Safeer Mehdi Shamsi, Simone Maccarini, Stefano Barberis, Rafael Guédez\",\"doi\":\"10.1115/1.4063418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The industrial sector is a major source of wealth, producing about one-quarter of the global gross product. However, industry is also a major emitter of CO2 and it represents a key challenge toward achieving the worldwide CO2 emission reduction targets. Nowadays, about 22% of the overall energy demand is heating for the industrial sector, generating about 40% of the global CO2 emissions. Additionally, 30% of the final energy demand of the industrial sector is electricity. Solutions to decarbonize the industrial sector are needed. This work presents the techno-economic assessment of four different molten salts-based power-to-heat-to-heat and power solutions aiming at decarbonizing the industrial sector, requiring medium temperature heat. The systems are studied under different electric markets. Dispatch strategies and system sizing are identified to ensure optimal techno-economic performance. The main performance indicators investigated are the levelized cost of heat and electricity (LCoH and LCoE), the operational expenditure, and the attainable savings with respect to alternative business as usual solutions. The results highlight that the proposed system can be cost-competitive, particularly in markets characterized by low electricity prices and high daily price fluctuations, such as Finland. In these locations, LCoE as low as 100 €/MWh and LCoH lower than 55 €/MWh can be attained by the base system configuration. The introduction of high temperature heat pumps can provide further LCoH reduction of about 50%. This study sets the ground for further power-to-heat-to-heat and power techno-economic investigations addressing different industrial sectors and identifies main system design strategies.\",\"PeriodicalId\":15685,\"journal\":{\"name\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering for Gas Turbines and Power-transactions of The Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063418\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering for Gas Turbines and Power-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063418","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Techno-Economic Assessment of CO2-Based Power to Heat to Power Systems for Industrial Applications
Abstract The industrial sector is a major source of wealth, producing about one-quarter of the global gross product. However, industry is also a major emitter of CO2 and it represents a key challenge toward achieving the worldwide CO2 emission reduction targets. Nowadays, about 22% of the overall energy demand is heating for the industrial sector, generating about 40% of the global CO2 emissions. Additionally, 30% of the final energy demand of the industrial sector is electricity. Solutions to decarbonize the industrial sector are needed. This work presents the techno-economic assessment of four different molten salts-based power-to-heat-to-heat and power solutions aiming at decarbonizing the industrial sector, requiring medium temperature heat. The systems are studied under different electric markets. Dispatch strategies and system sizing are identified to ensure optimal techno-economic performance. The main performance indicators investigated are the levelized cost of heat and electricity (LCoH and LCoE), the operational expenditure, and the attainable savings with respect to alternative business as usual solutions. The results highlight that the proposed system can be cost-competitive, particularly in markets characterized by low electricity prices and high daily price fluctuations, such as Finland. In these locations, LCoE as low as 100 €/MWh and LCoH lower than 55 €/MWh can be attained by the base system configuration. The introduction of high temperature heat pumps can provide further LCoH reduction of about 50%. This study sets the ground for further power-to-heat-to-heat and power techno-economic investigations addressing different industrial sectors and identifies main system design strategies.
期刊介绍:
The ASME Journal of Engineering for Gas Turbines and Power publishes archival-quality papers in the areas of gas and steam turbine technology, nuclear engineering, internal combustion engines, and fossil power generation. It covers a broad spectrum of practical topics of interest to industry. Subject areas covered include: thermodynamics; fluid mechanics; heat transfer; and modeling; propulsion and power generation components and systems; combustion, fuels, and emissions; nuclear reactor systems and components; thermal hydraulics; heat exchangers; nuclear fuel technology and waste management; I. C. engines for marine, rail, and power generation; steam and hydro power generation; advanced cycles for fossil energy generation; pollution control and environmental effects.