纳米流体热管传热机理的探索性综述

IF 1.1 Q3 Engineering
Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA
{"title":"纳米流体热管传热机理的探索性综述","authors":"Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA","doi":"10.18186/thermal.1377230","DOIUrl":null,"url":null,"abstract":"The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exploratory review on heat transfer mechanisms in nanofluid based heat pipes\",\"authors\":\"Udayvir SINGH, Harshit PANDEY, Naveen Kumar GUPTA\",\"doi\":\"10.18186/thermal.1377230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1377230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1377230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了纳米悬浮增强热管技术的研究进展。所回顾的研究是根据热管中包含的纳米悬浮液类型进行分类的,即单晶和纳米悬浮液;混合动力车。本研究试图确定热管中的热传递模式,并探讨它们之间的优势。研究发现,所识别的机制的主导地位与所研究的热管类型有很大关系,并受到操作条件的显著影响。本文将有助于正确理解纳米悬浮液填充热管的热机制,并进一步优化其热响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An exploratory review on heat transfer mechanisms in nanofluid based heat pipes
The current study reviews the research on nanosuspension-enhanced heat pipe technologies. The reviewed studies are categorized based on the nanosuspension type incorporated in the heat pipe i.e., mono & hybrid. The study attempts to identify the heat transport modes in heat pipes and explore their dominance among each other. The dominance of the identified mech-anisms was found to be a strong function of the heat pipe type investigated and get signifi-cantly influenced by the operating conditions. The current review paper will aid in properly understanding the thermal mechanisms prevalent in heat pipes filled with nanosuspensions and to further optimizing their thermal response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
18.20%
发文量
61
审稿时长
4 weeks
期刊介绍: Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信