{"title":"广义Mycielski图中的Hamilton环","authors":"L. Panneerselvam, S. Ganesamurthy, A. Muthusamy","doi":"10.1142/s179383092350088x","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] denote the generalized Mycielski graph of [Formula: see text]. In this paper, it is proved that for [Formula: see text], if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles, then [Formula: see text] has [Formula: see text] Hamilton cycles which are pairwise edge-disjoint. Further, it is shown that if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles with [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], then [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles. Finally it is shown that [Formula: see text] is hamiltonian even when [Formula: see text] is non-hamiltonian with a specified [Formula: see text]-factor. Consequently, the Mycielski graph of Flower Snark graph [Formula: see text], for all odd [Formula: see text], is Hamiltonian.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"268 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hamilton cycles in Generalized Mycielski Graphs\",\"authors\":\"L. Panneerselvam, S. Ganesamurthy, A. Muthusamy\",\"doi\":\"10.1142/s179383092350088x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] denote the generalized Mycielski graph of [Formula: see text]. In this paper, it is proved that for [Formula: see text], if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles, then [Formula: see text] has [Formula: see text] Hamilton cycles which are pairwise edge-disjoint. Further, it is shown that if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles with [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], then [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles. Finally it is shown that [Formula: see text] is hamiltonian even when [Formula: see text] is non-hamiltonian with a specified [Formula: see text]-factor. Consequently, the Mycielski graph of Flower Snark graph [Formula: see text], for all odd [Formula: see text], is Hamiltonian.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"268 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s179383092350088x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179383092350088x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Let [Formula: see text] denote the generalized Mycielski graph of [Formula: see text]. In this paper, it is proved that for [Formula: see text], if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles, then [Formula: see text] has [Formula: see text] Hamilton cycles which are pairwise edge-disjoint. Further, it is shown that if [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles with [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], then [Formula: see text] has [Formula: see text] pairwise edge-disjoint Hamilton cycles. Finally it is shown that [Formula: see text] is hamiltonian even when [Formula: see text] is non-hamiltonian with a specified [Formula: see text]-factor. Consequently, the Mycielski graph of Flower Snark graph [Formula: see text], for all odd [Formula: see text], is Hamiltonian.