Nataliya Ashukina, Nazar Gontar, Zinaida Danуshchuk, Olga Nikolchenko, Yaryna Kaliyuzhna
{"title":"基于聚乳酸和磷酸三钙结合间充质间质细胞的3d打印植入物填充远端干骺端缺损后大鼠股骨的组织学结构","authors":"Nataliya Ashukina, Nazar Gontar, Zinaida Danуshchuk, Olga Nikolchenko, Yaryna Kaliyuzhna","doi":"10.15674/0030-59872023343-50","DOIUrl":null,"url":null,"abstract":"Polylactide (PLA) frameworks printed on a 3D printer are used for filling the bone defects. The osteotropic properties of 3D-PLA can be improved by combining with tricalcium phosphate (TCP) and mesenchymal stromal cells (MSCs). Objective. Study the reconstruction in the rat femurs after implanting 3D-printed implants based on PLA and TCP (3D-I) in combination with cultured allogeneic MSCs into defects in the distal metaphysis. Methods. 48 white laboratory rats (age 5–6 months) were used, which were randomly divided into groups: Control — 3D-I; Experiment-I — 3D-I, saturated MSCs; Experiment II — 3D-I, with injection of 0.1‒0.2 ml of medium with MSCs into the area of surgical intervention 7 days after implantation. 15, 30 and 90 days after the operation, histological (with histomorphometry) studies were conducted. Results. The area of 3D-I decreased with time in all groups and connective and bone tissues formed in different ratios. 15 days after the surgery, in the Experiment-I group, the area of the connective tissue was 1.9 and 1.6 times greater (p<0.001) in comparison to the Control and Experiment II; 30 days it was greater 1.6 times (p < 0.001) and 1.4 times (p=0.001), respectively. 30 days after the surgery, the area of newly formed bone in the Experiment-I group was 2.2 times (p < 0.001) less than in the Control. On the contrary, in the Experiment-II, the area of newly formed bone was 1.5 and 3.3 times greater (p < 0.001) compared to Experiment-I and Control, respectively. Conclusions. The studied 3D-I with time after their implantation into the metaphyseal defects of the rats’ femurs are replaced by connective and bone tissues. The use of 3D-I, saturated MSCs, 15 and 30 days after the surgery, caused excessive formation of connective tissue and slower bone formation. Local injection of MSCs 7 days after the implantation of 3D-I caused to the formation of a larger area of newly bone 30th day after surgery compared to 3D-I alone and 3D-I with MSCs.","PeriodicalId":76291,"journal":{"name":"Ortopediia travmatologiia i protezirovanie","volume":"876 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HISTOLOGICAL STRUCTURE OF THE RAT FEMURS AFTER FILLING OF DEFECTS IN THE DISTAL METAPHYSIS WITH 3D-PRINTED IMPLANTS BASED ON POLYLACTIDE AND TRICALCIUM PHOSPHATE IN COMBINATION WITH MESENCHYMAL STROMAL CELLS\",\"authors\":\"Nataliya Ashukina, Nazar Gontar, Zinaida Danуshchuk, Olga Nikolchenko, Yaryna Kaliyuzhna\",\"doi\":\"10.15674/0030-59872023343-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polylactide (PLA) frameworks printed on a 3D printer are used for filling the bone defects. The osteotropic properties of 3D-PLA can be improved by combining with tricalcium phosphate (TCP) and mesenchymal stromal cells (MSCs). Objective. Study the reconstruction in the rat femurs after implanting 3D-printed implants based on PLA and TCP (3D-I) in combination with cultured allogeneic MSCs into defects in the distal metaphysis. Methods. 48 white laboratory rats (age 5–6 months) were used, which were randomly divided into groups: Control — 3D-I; Experiment-I — 3D-I, saturated MSCs; Experiment II — 3D-I, with injection of 0.1‒0.2 ml of medium with MSCs into the area of surgical intervention 7 days after implantation. 15, 30 and 90 days after the operation, histological (with histomorphometry) studies were conducted. Results. The area of 3D-I decreased with time in all groups and connective and bone tissues formed in different ratios. 15 days after the surgery, in the Experiment-I group, the area of the connective tissue was 1.9 and 1.6 times greater (p<0.001) in comparison to the Control and Experiment II; 30 days it was greater 1.6 times (p < 0.001) and 1.4 times (p=0.001), respectively. 30 days after the surgery, the area of newly formed bone in the Experiment-I group was 2.2 times (p < 0.001) less than in the Control. On the contrary, in the Experiment-II, the area of newly formed bone was 1.5 and 3.3 times greater (p < 0.001) compared to Experiment-I and Control, respectively. Conclusions. The studied 3D-I with time after their implantation into the metaphyseal defects of the rats’ femurs are replaced by connective and bone tissues. The use of 3D-I, saturated MSCs, 15 and 30 days after the surgery, caused excessive formation of connective tissue and slower bone formation. Local injection of MSCs 7 days after the implantation of 3D-I caused to the formation of a larger area of newly bone 30th day after surgery compared to 3D-I alone and 3D-I with MSCs.\",\"PeriodicalId\":76291,\"journal\":{\"name\":\"Ortopediia travmatologiia i protezirovanie\",\"volume\":\"876 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ortopediia travmatologiia i protezirovanie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15674/0030-59872023343-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ortopediia travmatologiia i protezirovanie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15674/0030-59872023343-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HISTOLOGICAL STRUCTURE OF THE RAT FEMURS AFTER FILLING OF DEFECTS IN THE DISTAL METAPHYSIS WITH 3D-PRINTED IMPLANTS BASED ON POLYLACTIDE AND TRICALCIUM PHOSPHATE IN COMBINATION WITH MESENCHYMAL STROMAL CELLS
Polylactide (PLA) frameworks printed on a 3D printer are used for filling the bone defects. The osteotropic properties of 3D-PLA can be improved by combining with tricalcium phosphate (TCP) and mesenchymal stromal cells (MSCs). Objective. Study the reconstruction in the rat femurs after implanting 3D-printed implants based on PLA and TCP (3D-I) in combination with cultured allogeneic MSCs into defects in the distal metaphysis. Methods. 48 white laboratory rats (age 5–6 months) were used, which were randomly divided into groups: Control — 3D-I; Experiment-I — 3D-I, saturated MSCs; Experiment II — 3D-I, with injection of 0.1‒0.2 ml of medium with MSCs into the area of surgical intervention 7 days after implantation. 15, 30 and 90 days after the operation, histological (with histomorphometry) studies were conducted. Results. The area of 3D-I decreased with time in all groups and connective and bone tissues formed in different ratios. 15 days after the surgery, in the Experiment-I group, the area of the connective tissue was 1.9 and 1.6 times greater (p<0.001) in comparison to the Control and Experiment II; 30 days it was greater 1.6 times (p < 0.001) and 1.4 times (p=0.001), respectively. 30 days after the surgery, the area of newly formed bone in the Experiment-I group was 2.2 times (p < 0.001) less than in the Control. On the contrary, in the Experiment-II, the area of newly formed bone was 1.5 and 3.3 times greater (p < 0.001) compared to Experiment-I and Control, respectively. Conclusions. The studied 3D-I with time after their implantation into the metaphyseal defects of the rats’ femurs are replaced by connective and bone tissues. The use of 3D-I, saturated MSCs, 15 and 30 days after the surgery, caused excessive formation of connective tissue and slower bone formation. Local injection of MSCs 7 days after the implantation of 3D-I caused to the formation of a larger area of newly bone 30th day after surgery compared to 3D-I alone and 3D-I with MSCs.