Luiz Otávio de Oliveira Pala, Marcela de M. Carvalho, Thelma Sáfadi
{"title":"计数时间序列的分析:贝叶斯GARMA(p, q)方法","authors":"Luiz Otávio de Oliveira Pala, Marcela de M. Carvalho, Thelma Sáfadi","doi":"10.17713/ajs.v52i5.1568","DOIUrl":null,"url":null,"abstract":"Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling non-Gaussian time series have been proposed in the literature in recent years, being applied in phenomena such as counts and rates. One of them is the Generalized Autoregressive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models theory and has been studied under the Bayesian perspective. This paper aimed to study models for time series of counts using the Poisson, Negative binomial and Poisson inverse Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out a simulation study and, in addition, we showed a practical application and evaluation of these models by using a set of real data, corresponding to the number of vehicle thefts in Brazil.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"27 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Count Time Series: A Bayesian GARMA(p, q) Approach\",\"authors\":\"Luiz Otávio de Oliveira Pala, Marcela de M. Carvalho, Thelma Sáfadi\",\"doi\":\"10.17713/ajs.v52i5.1568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling non-Gaussian time series have been proposed in the literature in recent years, being applied in phenomena such as counts and rates. One of them is the Generalized Autoregressive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models theory and has been studied under the Bayesian perspective. This paper aimed to study models for time series of counts using the Poisson, Negative binomial and Poisson inverse Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out a simulation study and, in addition, we showed a practical application and evaluation of these models by using a set of real data, corresponding to the number of vehicle thefts in Brazil.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v52i5.1568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i5.1568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Analysis of Count Time Series: A Bayesian GARMA(p, q) Approach
Extensions of the Autoregressive Moving Average, ARMA(p, q), class for modeling non-Gaussian time series have been proposed in the literature in recent years, being applied in phenomena such as counts and rates. One of them is the Generalized Autoregressive Moving Average, GARMA(p, q), that is supported by the Generalized Linear Models theory and has been studied under the Bayesian perspective. This paper aimed to study models for time series of counts using the Poisson, Negative binomial and Poisson inverse Gaussian distributions, and adopting the Bayesian framework. To do so, we carried out a simulation study and, in addition, we showed a practical application and evaluation of these models by using a set of real data, corresponding to the number of vehicle thefts in Brazil.
期刊介绍:
The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.