带参数的形式正则-奇异连接的代数理论

Phùng Hô Hai, João Pedro dos Santos, Pham Thanh Tâm
{"title":"带参数的形式正则-奇异连接的代数理论","authors":"Phùng Hô Hai, João Pedro dos Santos, Pham Thanh Tâm","doi":"10.4171/rsmup/134","DOIUrl":null,"url":null,"abstract":"This paper is divided into two parts. The first is a review, through categorical lenses, of the classical theory of regular-singular differential systems over $C((x))$ and $\\mathbb P^1_C\\smallsetminus\\{0,\\infty\\}$, where $C$ is algebraically closed and of characteristic zero. It aims at reading the existing classification results as an equivalence between regular-singular systems and representations of the group $\\mathbb Z$. In the second part, we deal with regular-singular connections over $R((x))$ and $\\mathbb P_R^1\\smallsetminus\\{0,\\infty\\}$, where $R=C[[t_1,\\ldots,t_r]]/I$. The picture we offer shows that regular-singular connections are equivalent to representations of $\\mathbb Z$, now over $R$.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algebraic theory of formal regular-singular connections with parameters\",\"authors\":\"Phùng Hô Hai, João Pedro dos Santos, Pham Thanh Tâm\",\"doi\":\"10.4171/rsmup/134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is divided into two parts. The first is a review, through categorical lenses, of the classical theory of regular-singular differential systems over $C((x))$ and $\\\\mathbb P^1_C\\\\smallsetminus\\\\{0,\\\\infty\\\\}$, where $C$ is algebraically closed and of characteristic zero. It aims at reading the existing classification results as an equivalence between regular-singular systems and representations of the group $\\\\mathbb Z$. In the second part, we deal with regular-singular connections over $R((x))$ and $\\\\mathbb P_R^1\\\\smallsetminus\\\\{0,\\\\infty\\\\}$, where $R=C[[t_1,\\\\ldots,t_r]]/I$. The picture we offer shows that regular-singular connections are equivalent to representations of $\\\\mathbb Z$, now over $R$.\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文分为两部分。首先,通过范畴透镜,回顾了$C((x))$和$\mathbb P^1_C\smallsetminus\{0,\infty\}$上正则奇异微分系统的经典理论,其中$C$在代数上是封闭的,特征为零。它旨在将现有的分类结果视为正则奇异系统和群$\mathbb Z$表示之间的等价。在第二部分中,我们处理$R((x))$和$\mathbb P_R^1\smallsetminus\{0,\infty\}$上的正则奇异连接,其中$R=C[[t_1,\ldots,t_r]]/I$。我们提供的图显示正则-奇异连接等价于$\mathbb Z$的表示,现在是$R$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic theory of formal regular-singular connections with parameters
This paper is divided into two parts. The first is a review, through categorical lenses, of the classical theory of regular-singular differential systems over $C((x))$ and $\mathbb P^1_C\smallsetminus\{0,\infty\}$, where $C$ is algebraically closed and of characteristic zero. It aims at reading the existing classification results as an equivalence between regular-singular systems and representations of the group $\mathbb Z$. In the second part, we deal with regular-singular connections over $R((x))$ and $\mathbb P_R^1\smallsetminus\{0,\infty\}$, where $R=C[[t_1,\ldots,t_r]]/I$. The picture we offer shows that regular-singular connections are equivalent to representations of $\mathbb Z$, now over $R$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信