原始空间中求解全和双有界支持向量机的新方法

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hossein Moosaei, Saeed Khosravi, Fatemeh Bazikar, Milan Hladík, Mario Rosario Guarracino
{"title":"原始空间中求解全和双有界支持向量机的新方法","authors":"Hossein Moosaei,&nbsp;Saeed Khosravi,&nbsp;Fatemeh Bazikar,&nbsp;Milan Hladík,&nbsp;Mario Rosario Guarracino","doi":"10.1007/s10472-023-09896-5","DOIUrl":null,"url":null,"abstract":"<div><p>In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (N<span>\\( \\mathfrak {U} \\)</span>TBSVM), a Newton-based approach for solving in the primal space the optimization problems related to Twin Bounded Support Vector Machines with Universum data (<span>\\( \\mathfrak {U} \\)</span>TBSVM). In the N<span>\\( \\mathfrak {U} \\)</span>TBSVM, the constrained programming problems of <span>\\( \\mathfrak {U} \\)</span>TBSVM are converted into unconstrained optimization problems, and a generalization of Newton’s method for solving the unconstrained problems is introduced. Numerical experiments on synthetic, UCI, and NDC data sets show the ability and effectiveness of the proposed N<span>\\( \\mathfrak {U} \\)</span>TBSVM. We apply the suggested method for gender detection from face images, and compare it with other methods.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"93 1","pages":"131 - 150"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for solving universum twin bounded support vector machine in the primal space\",\"authors\":\"Hossein Moosaei,&nbsp;Saeed Khosravi,&nbsp;Fatemeh Bazikar,&nbsp;Milan Hladík,&nbsp;Mario Rosario Guarracino\",\"doi\":\"10.1007/s10472-023-09896-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (N<span>\\\\( \\\\mathfrak {U} \\\\)</span>TBSVM), a Newton-based approach for solving in the primal space the optimization problems related to Twin Bounded Support Vector Machines with Universum data (<span>\\\\( \\\\mathfrak {U} \\\\)</span>TBSVM). In the N<span>\\\\( \\\\mathfrak {U} \\\\)</span>TBSVM, the constrained programming problems of <span>\\\\( \\\\mathfrak {U} \\\\)</span>TBSVM are converted into unconstrained optimization problems, and a generalization of Newton’s method for solving the unconstrained problems is introduced. Numerical experiments on synthetic, UCI, and NDC data sets show the ability and effectiveness of the proposed N<span>\\\\( \\\\mathfrak {U} \\\\)</span>TBSVM. We apply the suggested method for gender detection from face images, and compare it with other methods.</p></div>\",\"PeriodicalId\":7971,\"journal\":{\"name\":\"Annals of Mathematics and Artificial Intelligence\",\"volume\":\"93 1\",\"pages\":\"131 - 150\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematics and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10472-023-09896-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-023-09896-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在监督式学习中,第三类Universum(不属于分类任务中的任何一类)已被证明是有用的。在本研究中,我们提出了一种基于牛顿的方法(N \( \mathfrak {U} \) TBSVM),用于在原始空间中解决与Universum数据(\( \mathfrak {U} \) TBSVM)相关的双界支持向量机优化问题。在N \( \mathfrak {U} \) TBSVM中,将\( \mathfrak {U} \) TBSVM的约束规划问题转化为无约束优化问题,并推广牛顿法求解无约束问题。在合成数据集、UCI数据集和NDC数据集上的数值实验表明了所提出的N \( \mathfrak {U} \) TBSVM的能力和有效性。我们将该方法应用于人脸图像的性别检测,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for solving universum twin bounded support vector machine in the primal space

In supervised learning, the Universum, a third class that is not a part of either class in the classification task, has proven to be useful. In this study we propose (N\( \mathfrak {U} \)TBSVM), a Newton-based approach for solving in the primal space the optimization problems related to Twin Bounded Support Vector Machines with Universum data (\( \mathfrak {U} \)TBSVM). In the N\( \mathfrak {U} \)TBSVM, the constrained programming problems of \( \mathfrak {U} \)TBSVM are converted into unconstrained optimization problems, and a generalization of Newton’s method for solving the unconstrained problems is introduced. Numerical experiments on synthetic, UCI, and NDC data sets show the ability and effectiveness of the proposed N\( \mathfrak {U} \)TBSVM. We apply the suggested method for gender detection from face images, and compare it with other methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信