M. Yaremchuk, C. N. Barron, W. Crawford, C. DeHaan, C. Rowley, B. Ruston, T. Townsend
{"title":"ESPC系统的强耦合同化","authors":"M. Yaremchuk, C. N. Barron, W. Crawford, C. DeHaan, C. Rowley, B. Ruston, T. Townsend","doi":"10.1002/qj.4611","DOIUrl":null,"url":null,"abstract":"In this study we assess a possibility to efficiently represent the strongly coupled increment in an ocean‐atmosphere coupled data assimilation (DA) system by applying an iterative procedure involving uncoupled solvers and the weakly coupled analysis as a first guess approximation to the strongly coupled increment. Using the output of the ensemble‐based weakly coupled DA system, we explore convergence of the approximations to the strongly coupled DA solution by applying the uncoupled solver to a sequence of innovation vectors at various spacetime locations over the global ocean grid. The results demonstrate that, in general, fewer than two iterations are required to approximate the coupled increment in the majority of the tested locations with sufficient (3%) accuracy given the uncertainty of the background error covariance estimated from the limited number of the ensemble members. We assess the impact of data thinning and hybridization of the background error covariance model on the convergence of the iterative approximations to the strongly coupled increment. An empirical relationship between the spectral radius of the expansion matrix and convergence rate is obtained. This article is protected by copyright. All rights reserved.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"15 2","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a strongly coupled assimilation in the ESPC system\",\"authors\":\"M. Yaremchuk, C. N. Barron, W. Crawford, C. DeHaan, C. Rowley, B. Ruston, T. Townsend\",\"doi\":\"10.1002/qj.4611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we assess a possibility to efficiently represent the strongly coupled increment in an ocean‐atmosphere coupled data assimilation (DA) system by applying an iterative procedure involving uncoupled solvers and the weakly coupled analysis as a first guess approximation to the strongly coupled increment. Using the output of the ensemble‐based weakly coupled DA system, we explore convergence of the approximations to the strongly coupled DA solution by applying the uncoupled solver to a sequence of innovation vectors at various spacetime locations over the global ocean grid. The results demonstrate that, in general, fewer than two iterations are required to approximate the coupled increment in the majority of the tested locations with sufficient (3%) accuracy given the uncertainty of the background error covariance estimated from the limited number of the ensemble members. We assess the impact of data thinning and hybridization of the background error covariance model on the convergence of the iterative approximations to the strongly coupled increment. An empirical relationship between the spectral radius of the expansion matrix and convergence rate is obtained. This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"15 2\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4611\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/qj.4611","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Toward a strongly coupled assimilation in the ESPC system
In this study we assess a possibility to efficiently represent the strongly coupled increment in an ocean‐atmosphere coupled data assimilation (DA) system by applying an iterative procedure involving uncoupled solvers and the weakly coupled analysis as a first guess approximation to the strongly coupled increment. Using the output of the ensemble‐based weakly coupled DA system, we explore convergence of the approximations to the strongly coupled DA solution by applying the uncoupled solver to a sequence of innovation vectors at various spacetime locations over the global ocean grid. The results demonstrate that, in general, fewer than two iterations are required to approximate the coupled increment in the majority of the tested locations with sufficient (3%) accuracy given the uncertainty of the background error covariance estimated from the limited number of the ensemble members. We assess the impact of data thinning and hybridization of the background error covariance model on the convergence of the iterative approximations to the strongly coupled increment. An empirical relationship between the spectral radius of the expansion matrix and convergence rate is obtained. This article is protected by copyright. All rights reserved.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.