弱监督三维点云语义分割调查

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jingyi Wang, Yu Liu, Hanlin Tan, Maojun Zhang
{"title":"弱监督三维点云语义分割调查","authors":"Jingyi Wang,&nbsp;Yu Liu,&nbsp;Hanlin Tan,&nbsp;Maojun Zhang","doi":"10.1049/cvi2.12250","DOIUrl":null,"url":null,"abstract":"<p>With the popularity and advancement of 3D point cloud data acquisition technologies and sensors, research into 3D point clouds has made considerable strides based on deep learning. The semantic segmentation of point clouds, a crucial step in comprehending 3D scenes, has drawn much attention. The accuracy and effectiveness of fully supervised semantic segmentation tasks have greatly improved with the increase in the number of accessible datasets. However, these achievements rely on time-consuming and expensive full labelling. In solve of these existential issues, research on weakly supervised learning has recently exploded. These methods train neural networks to tackle 3D semantic segmentation tasks with fewer point labels. In addition to providing a thorough overview of the history and current state of the art in weakly supervised semantic segmentation of 3D point clouds, a detailed description of the most widely used data acquisition sensors, a list of publicly accessible benchmark datasets, and a look ahead to potential future development directions is provided.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 3","pages":"329-342"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12250","citationCount":"0","resultStr":"{\"title\":\"A survey on weakly supervised 3D point cloud semantic segmentation\",\"authors\":\"Jingyi Wang,&nbsp;Yu Liu,&nbsp;Hanlin Tan,&nbsp;Maojun Zhang\",\"doi\":\"10.1049/cvi2.12250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the popularity and advancement of 3D point cloud data acquisition technologies and sensors, research into 3D point clouds has made considerable strides based on deep learning. The semantic segmentation of point clouds, a crucial step in comprehending 3D scenes, has drawn much attention. The accuracy and effectiveness of fully supervised semantic segmentation tasks have greatly improved with the increase in the number of accessible datasets. However, these achievements rely on time-consuming and expensive full labelling. In solve of these existential issues, research on weakly supervised learning has recently exploded. These methods train neural networks to tackle 3D semantic segmentation tasks with fewer point labels. In addition to providing a thorough overview of the history and current state of the art in weakly supervised semantic segmentation of 3D point clouds, a detailed description of the most widely used data acquisition sensors, a list of publicly accessible benchmark datasets, and a look ahead to potential future development directions is provided.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 3\",\"pages\":\"329-342\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12250\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12250\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着三维点云数据采集技术和传感器的普及和发展,基于深度学习的三维点云研究取得了长足的进步。作为理解三维场景的关键步骤,点云的语义分割备受关注。随着可访问数据集数量的增加,完全有监督的语义分割任务的准确性和有效性大大提高。然而,这些成就依赖于耗时且昂贵的全标记。为了解决这些存在的问题,有关弱监督学习的研究最近呈现爆炸式增长。这些方法训练神经网络,以较少的点标签处理三维语义分割任务。除了对三维点云弱监督语义分割技术的历史和现状进行全面概述外,还详细介绍了最广泛使用的数据采集传感器、可公开访问的基准数据集列表,并展望了潜在的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A survey on weakly supervised 3D point cloud semantic segmentation

A survey on weakly supervised 3D point cloud semantic segmentation

With the popularity and advancement of 3D point cloud data acquisition technologies and sensors, research into 3D point clouds has made considerable strides based on deep learning. The semantic segmentation of point clouds, a crucial step in comprehending 3D scenes, has drawn much attention. The accuracy and effectiveness of fully supervised semantic segmentation tasks have greatly improved with the increase in the number of accessible datasets. However, these achievements rely on time-consuming and expensive full labelling. In solve of these existential issues, research on weakly supervised learning has recently exploded. These methods train neural networks to tackle 3D semantic segmentation tasks with fewer point labels. In addition to providing a thorough overview of the history and current state of the art in weakly supervised semantic segmentation of 3D point clouds, a detailed description of the most widely used data acquisition sensors, a list of publicly accessible benchmark datasets, and a look ahead to potential future development directions is provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信