矿业城市工矿用地、景观格局与碳储量耦合协调分析——以鄂尔多斯市为例

IF 4.5 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Junjie Dong, Ziqi Guo, Yindi Zhao, Mengfan Hu, Jiaxing Li
{"title":"矿业城市工矿用地、景观格局与碳储量耦合协调分析——以鄂尔多斯市为例","authors":"Junjie Dong, Ziqi Guo, Yindi Zhao, Mengfan Hu, Jiaxing Li","doi":"10.1080/19475705.2023.2275539","DOIUrl":null,"url":null,"abstract":"Analyzing and optimizing the spatio-temporal characteristics of terrestrial ecosystem carbon storage, as well as examining their coupling and coordination relationships with industrial mining land and landscape pattern, can become a reference in the pursuit of carbon peaking and carbon neutrality for mining cities. This research takes the typical mining city of Ordos as the study target. Based on the LULC, the Multi-objective Planning (MOP) and Patch-generating Land Use Simulation (PLUS) model are used to predict the LULC under the natural development (Q1), ecological protection (Q2) and economic development (Q3) scenarios of 2030, and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model is used to analyze the dynamics of carbon storage, finally a coupling coordination of industrial mining land, landscape pattern and carbon storage is constructed to investigate the interrelationship between them. The results show: (1) From 2000 to 2020, carbon storage shows an inverted ‘V’ shape of rising and then falling; (2) Compared to carbon storage in 2020, the Q1 demonstrates a decrease, while the Q2 and Q3 demonstrate increases; (3) From 2000 to 2020, the coupling coordination degree decreases, and in the future, Q2 and Q3 show an increase in it relative to the Q1.","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":"9 6","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupling coordination analysis of industrial mining land, landscape pattern and carbon storage in a mining city: a case study of Ordos, China\",\"authors\":\"Junjie Dong, Ziqi Guo, Yindi Zhao, Mengfan Hu, Jiaxing Li\",\"doi\":\"10.1080/19475705.2023.2275539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing and optimizing the spatio-temporal characteristics of terrestrial ecosystem carbon storage, as well as examining their coupling and coordination relationships with industrial mining land and landscape pattern, can become a reference in the pursuit of carbon peaking and carbon neutrality for mining cities. This research takes the typical mining city of Ordos as the study target. Based on the LULC, the Multi-objective Planning (MOP) and Patch-generating Land Use Simulation (PLUS) model are used to predict the LULC under the natural development (Q1), ecological protection (Q2) and economic development (Q3) scenarios of 2030, and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model is used to analyze the dynamics of carbon storage, finally a coupling coordination of industrial mining land, landscape pattern and carbon storage is constructed to investigate the interrelationship between them. The results show: (1) From 2000 to 2020, carbon storage shows an inverted ‘V’ shape of rising and then falling; (2) Compared to carbon storage in 2020, the Q1 demonstrates a decrease, while the Q2 and Q3 demonstrate increases; (3) From 2000 to 2020, the coupling coordination degree decreases, and in the future, Q2 and Q3 show an increase in it relative to the Q1.\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":\"9 6\",\"pages\":\"0\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2275539\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2275539","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分析和优化陆地生态系统碳储量的时空特征,考察其与工业矿业用地和景观格局的耦合协调关系,可为矿业城市追求碳峰值和碳中和提供参考。本研究以鄂尔多斯典型矿业城市为研究对象。在此基础上,采用多目标规划(MOP)和斑块生成土地利用模拟(PLUS)模型对2030年自然开发(Q1)、生态保护(Q2)和经济发展(Q3)情景下的土地利用变化进行了预测,采用生态系统服务与权衡综合评估(InVEST)模型对碳储量动态进行了分析,最终得出了工矿用地的耦合协调。构建景观格局与碳储量的关系,探讨景观格局与碳储量的相互关系。结果表明:①2000 ~ 2020年,我国碳储量呈先上升后下降的倒“V”型变化;(2)与2020年相比,第一季度碳储量呈下降趋势,第二季度和第三季度呈上升趋势;(3)从2000年到2020年,耦合协调度呈下降趋势,未来Q2和Q3相对Q1呈上升趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coupling coordination analysis of industrial mining land, landscape pattern and carbon storage in a mining city: a case study of Ordos, China
Analyzing and optimizing the spatio-temporal characteristics of terrestrial ecosystem carbon storage, as well as examining their coupling and coordination relationships with industrial mining land and landscape pattern, can become a reference in the pursuit of carbon peaking and carbon neutrality for mining cities. This research takes the typical mining city of Ordos as the study target. Based on the LULC, the Multi-objective Planning (MOP) and Patch-generating Land Use Simulation (PLUS) model are used to predict the LULC under the natural development (Q1), ecological protection (Q2) and economic development (Q3) scenarios of 2030, and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model is used to analyze the dynamics of carbon storage, finally a coupling coordination of industrial mining land, landscape pattern and carbon storage is constructed to investigate the interrelationship between them. The results show: (1) From 2000 to 2020, carbon storage shows an inverted ‘V’ shape of rising and then falling; (2) Compared to carbon storage in 2020, the Q1 demonstrates a decrease, while the Q2 and Q3 demonstrate increases; (3) From 2000 to 2020, the coupling coordination degree decreases, and in the future, Q2 and Q3 show an increase in it relative to the Q1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomatics Natural Hazards & Risk
Geomatics Natural Hazards & Risk GEOSCIENCES, MULTIDISCIPLINARY-METEOROLOGY & ATMOSPHERIC SCIENCES
CiteScore
7.70
自引率
4.80%
发文量
117
审稿时长
>12 weeks
期刊介绍: The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards. Geomatics, Natural Hazards and Risk covers the following topics: - Remote sensing techniques - Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change - Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards. - Results of findings on major natural hazards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信