{"title":"采用文丘里隧道的混合式风力发电机-水蒸馏系统建模","authors":"Malak I. Naji, M. A. Al-Nimr","doi":"10.2166/hydro.2023.269","DOIUrl":null,"url":null,"abstract":"Abstract This study presents the development of a novel hybrid wind power generator–water distillation system with the objective of providing sustainable solutions for impoverished isolated communities facing limited resources. The advantage of the proposed system is its ability to operate day and night; therefore, it produces larger quantities of distilled water even on cloudy days with winds. The system comprises a Venturi tunnel integrated with a wind turbine, an attached impure water tank, and a condenser located at the end section. The accelerated airflow at the throat section serves two purposes: water evaporation from the tank and power generation through the wind turbine. The evaporated water is subsequently collected as the airflow decelerates and the pressure decreases along the diverging section. Theoretical and computational modelling is employed to design the system by examining air speed, area ratio, relative humidity, as well as air, and water temperatures. The system exhibits enhanced performance under warm and dry weather conditions, thereby optimizing its performance. Conversely, temperature and relative humidity do not affect power generation; it was increased by higher air speeds and larger area ratios. This data-driven approach ensures optimal design parameters are selected, aligning the system's capabilities with the specific freshwater demand.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":"20 3","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling of a hybrid wind power generator–water distillation system using a Venturi tunnel\",\"authors\":\"Malak I. Naji, M. A. Al-Nimr\",\"doi\":\"10.2166/hydro.2023.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents the development of a novel hybrid wind power generator–water distillation system with the objective of providing sustainable solutions for impoverished isolated communities facing limited resources. The advantage of the proposed system is its ability to operate day and night; therefore, it produces larger quantities of distilled water even on cloudy days with winds. The system comprises a Venturi tunnel integrated with a wind turbine, an attached impure water tank, and a condenser located at the end section. The accelerated airflow at the throat section serves two purposes: water evaporation from the tank and power generation through the wind turbine. The evaporated water is subsequently collected as the airflow decelerates and the pressure decreases along the diverging section. Theoretical and computational modelling is employed to design the system by examining air speed, area ratio, relative humidity, as well as air, and water temperatures. The system exhibits enhanced performance under warm and dry weather conditions, thereby optimizing its performance. Conversely, temperature and relative humidity do not affect power generation; it was increased by higher air speeds and larger area ratios. This data-driven approach ensures optimal design parameters are selected, aligning the system's capabilities with the specific freshwater demand.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\"20 3\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.269\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/hydro.2023.269","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Modelling of a hybrid wind power generator–water distillation system using a Venturi tunnel
Abstract This study presents the development of a novel hybrid wind power generator–water distillation system with the objective of providing sustainable solutions for impoverished isolated communities facing limited resources. The advantage of the proposed system is its ability to operate day and night; therefore, it produces larger quantities of distilled water even on cloudy days with winds. The system comprises a Venturi tunnel integrated with a wind turbine, an attached impure water tank, and a condenser located at the end section. The accelerated airflow at the throat section serves two purposes: water evaporation from the tank and power generation through the wind turbine. The evaporated water is subsequently collected as the airflow decelerates and the pressure decreases along the diverging section. Theoretical and computational modelling is employed to design the system by examining air speed, area ratio, relative humidity, as well as air, and water temperatures. The system exhibits enhanced performance under warm and dry weather conditions, thereby optimizing its performance. Conversely, temperature and relative humidity do not affect power generation; it was increased by higher air speeds and larger area ratios. This data-driven approach ensures optimal design parameters are selected, aligning the system's capabilities with the specific freshwater demand.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.