Jin-Hwan Lee, Gi-Hun Gwon, In-Ho Kim, Hyung-Jo Jung
{"title":"一种提高无人机桥梁检测图像质量的运动去模糊网络","authors":"Jin-Hwan Lee, Gi-Hun Gwon, In-Ho Kim, Hyung-Jo Jung","doi":"10.3390/drones7110657","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"54 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection\",\"authors\":\"Jin-Hwan Lee, Gi-Hun Gwon, In-Ho Kim, Hyung-Jo Jung\",\"doi\":\"10.3390/drones7110657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7110657\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7110657","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection
Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images.