电镀涂层对微通道内单相流体流动和传热影响的研究

Hasan Hussein, Ekhlas Fayyadh, Moayed Hasan
{"title":"电镀涂层对微通道内单相流体流动和传热影响的研究","authors":"Hasan Hussein, Ekhlas Fayyadh, Moayed Hasan","doi":"10.30684/etj.2023.141194.1487","DOIUrl":null,"url":null,"abstract":"A significant heat flux affects the efficacy and durability of most equipment. Cooling these devices is the primary concern, prompting specialists to propose and investigate various solutions. For these applications, microchannels are regarded as a possibility. Experiments were conducted in this study to determine the effect of an electroplating coating on the characteristics of a single-phase flow. As the working fluid for the experiments, deionized water was used. During the investigations, a microchannel of 0.3mm width and 0.7mm depth with an average roughness of 18.64 nm was machined; the inlet temperature was maintained at 30°C, and the Reynolds number ranged from 109.2 to 2599. According to the results, the correlation between the fanning friction factor and laminar and turbulent flows can predict experimental findings with high precision. In addition, an increase in the Nusselt number correlates with an increase in the Reynolds number.When compared to a conventional microchannel, the models with an Al2O3 cladding have a fanning friction factor that is much greater. According to the results, a reliable correlation can be used to precisely estimate the friction factor of typical Al2O3-coated microchannels. The results demonstrated that the average value of the maximum thermal performance value was approximately 1.19 at low Reynolds numbers between 240-480 and then decreased as Reynolds numbers increased.","PeriodicalId":476841,"journal":{"name":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the Effect of Electroplated Coatings on Single-Phase Fluid Flow and Heat Transfer in Microchannel\",\"authors\":\"Hasan Hussein, Ekhlas Fayyadh, Moayed Hasan\",\"doi\":\"10.30684/etj.2023.141194.1487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A significant heat flux affects the efficacy and durability of most equipment. Cooling these devices is the primary concern, prompting specialists to propose and investigate various solutions. For these applications, microchannels are regarded as a possibility. Experiments were conducted in this study to determine the effect of an electroplating coating on the characteristics of a single-phase flow. As the working fluid for the experiments, deionized water was used. During the investigations, a microchannel of 0.3mm width and 0.7mm depth with an average roughness of 18.64 nm was machined; the inlet temperature was maintained at 30°C, and the Reynolds number ranged from 109.2 to 2599. According to the results, the correlation between the fanning friction factor and laminar and turbulent flows can predict experimental findings with high precision. In addition, an increase in the Nusselt number correlates with an increase in the Reynolds number.When compared to a conventional microchannel, the models with an Al2O3 cladding have a fanning friction factor that is much greater. According to the results, a reliable correlation can be used to precisely estimate the friction factor of typical Al2O3-coated microchannels. The results demonstrated that the average value of the maximum thermal performance value was approximately 1.19 at low Reynolds numbers between 240-480 and then decreased as Reynolds numbers increased.\",\"PeriodicalId\":476841,\"journal\":{\"name\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30684/etj.2023.141194.1487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maǧallaẗ al-handasaẗ wa-al-tiknūlūǧiyā","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30684/etj.2023.141194.1487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个显著的热流影响大多数设备的效能和耐用性。冷却这些设备是主要关注的问题,促使专家提出和研究各种解决方案。对于这些应用,微通道被认为是一种可能性。在本研究中进行了实验,以确定电镀涂层对单相流特性的影响。实验用去离子水作为工质。在研究过程中,加工了宽0.3mm,深0.7mm,平均粗糙度为18.64 nm的微通道;进口温度维持在30℃,雷诺数范围为109.2 ~ 2599。结果表明,扇形摩擦因数与层流和湍流之间的相关性可以高精度地预测实验结果。此外,努塞尔数的增加与雷诺数的增加相关。与传统的微通道相比,具有Al2O3包层的模型具有更大的扇形摩擦因数。根据研究结果,可以采用可靠的相关性来精确估计典型al2o3包覆微通道的摩擦因数。结果表明:在240 ~ 480低雷诺数时,最大热工性能值的平均值约为1.19,随着雷诺数的增加而减小;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigating the Effect of Electroplated Coatings on Single-Phase Fluid Flow and Heat Transfer in Microchannel
A significant heat flux affects the efficacy and durability of most equipment. Cooling these devices is the primary concern, prompting specialists to propose and investigate various solutions. For these applications, microchannels are regarded as a possibility. Experiments were conducted in this study to determine the effect of an electroplating coating on the characteristics of a single-phase flow. As the working fluid for the experiments, deionized water was used. During the investigations, a microchannel of 0.3mm width and 0.7mm depth with an average roughness of 18.64 nm was machined; the inlet temperature was maintained at 30°C, and the Reynolds number ranged from 109.2 to 2599. According to the results, the correlation between the fanning friction factor and laminar and turbulent flows can predict experimental findings with high precision. In addition, an increase in the Nusselt number correlates with an increase in the Reynolds number.When compared to a conventional microchannel, the models with an Al2O3 cladding have a fanning friction factor that is much greater. According to the results, a reliable correlation can be used to precisely estimate the friction factor of typical Al2O3-coated microchannels. The results demonstrated that the average value of the maximum thermal performance value was approximately 1.19 at low Reynolds numbers between 240-480 and then decreased as Reynolds numbers increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信