用SMOTE(合成少数过采样技术)随机森林进行低出生体重分类

Sachnaz Desta Oktarina, Hari Wijayanto, Helena Ramadhini Yarah
{"title":"用SMOTE(合成少数过采样技术)随机森林进行低出生体重分类","authors":"Sachnaz Desta Oktarina, Hari Wijayanto, Helena Ramadhini Yarah","doi":"10.29238/kia.v17i1.1802","DOIUrl":null,"url":null,"abstract":"Low birth weight (LBW) is defined as a condition where the birth weight is less than 2500 grams. Infants born with LBW conditions are more susceptible to disease and have a higher risk of dying at an early age. LBW conditions that are prone to unbalanced data can be classified using the Synthetic Minority Oversampling Technique (SMOTE) random forest method. The analysis was processed on the 2017 Indonesian Demographic and Health Survey (IDHS) data to identify important variables in predicting the incidence of LBW. The results showed that the SMOTE random forest model provided an accuracy value of 79.84%, sensitivity of 30.99%, specificity of 83.6%, and AUC of 62%. Important variables in predicting the incidence of LBW were the number of antenatal care visits, wealth quantile, maternal age at delivery, iron supplementation, marital status, and twins’ birth.","PeriodicalId":489165,"journal":{"name":"Jurnal Kesehatan Ibu dan Anak","volume":"616 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low birth weight (LBW) classification with SMOTE (Synthetic Minority Over-sampling Technique) random forest\",\"authors\":\"Sachnaz Desta Oktarina, Hari Wijayanto, Helena Ramadhini Yarah\",\"doi\":\"10.29238/kia.v17i1.1802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low birth weight (LBW) is defined as a condition where the birth weight is less than 2500 grams. Infants born with LBW conditions are more susceptible to disease and have a higher risk of dying at an early age. LBW conditions that are prone to unbalanced data can be classified using the Synthetic Minority Oversampling Technique (SMOTE) random forest method. The analysis was processed on the 2017 Indonesian Demographic and Health Survey (IDHS) data to identify important variables in predicting the incidence of LBW. The results showed that the SMOTE random forest model provided an accuracy value of 79.84%, sensitivity of 30.99%, specificity of 83.6%, and AUC of 62%. Important variables in predicting the incidence of LBW were the number of antenatal care visits, wealth quantile, maternal age at delivery, iron supplementation, marital status, and twins’ birth.\",\"PeriodicalId\":489165,\"journal\":{\"name\":\"Jurnal Kesehatan Ibu dan Anak\",\"volume\":\"616 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kesehatan Ibu dan Anak\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29238/kia.v17i1.1802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kesehatan Ibu dan Anak","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29238/kia.v17i1.1802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低出生体重(LBW)是指出生体重低于2500克。出生时患有LBW的婴儿更容易患病,并且在幼年时死亡的风险更高。容易产生不平衡数据的LBW条件可以使用合成少数派过采样技术(SMOTE)随机森林方法进行分类。该分析是根据2017年印度尼西亚人口与健康调查(IDHS)数据进行的,以确定预测LBW发病率的重要变量。结果表明,SMOTE随机森林模型的准确率为79.84%,灵敏度为30.99%,特异性为83.6%,AUC为62%。预测LBW发病率的重要变量是产前检查次数、财富分位数、产妇分娩年龄、铁补充剂、婚姻状况和双胞胎出生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low birth weight (LBW) classification with SMOTE (Synthetic Minority Over-sampling Technique) random forest
Low birth weight (LBW) is defined as a condition where the birth weight is less than 2500 grams. Infants born with LBW conditions are more susceptible to disease and have a higher risk of dying at an early age. LBW conditions that are prone to unbalanced data can be classified using the Synthetic Minority Oversampling Technique (SMOTE) random forest method. The analysis was processed on the 2017 Indonesian Demographic and Health Survey (IDHS) data to identify important variables in predicting the incidence of LBW. The results showed that the SMOTE random forest model provided an accuracy value of 79.84%, sensitivity of 30.99%, specificity of 83.6%, and AUC of 62%. Important variables in predicting the incidence of LBW were the number of antenatal care visits, wealth quantile, maternal age at delivery, iron supplementation, marital status, and twins’ birth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信