SSA在三相非对称网络最优换相问题中的应用

Antonny Santiago Vargas-Beltrán, Oscar Mauricio Angarita-Santofimio, Oscar Danilo Montoya
{"title":"SSA在三相非对称网络最优换相问题中的应用","authors":"Antonny Santiago Vargas-Beltrán, Oscar Mauricio Angarita-Santofimio, Oscar Danilo Montoya","doi":"10.18273/revuin.v22n4-2023004","DOIUrl":null,"url":null,"abstract":"This research addresses the optimal phase-balancing problem by applying a master-slave optimization methodology. The master stage defines the load connections per node using a discrete codification, while the slave stage evaluates each load configuration provided by the master stage via a three-phase power flow. For the master stage, the salp swarm algorithm (SSA) was selected, which is an efficient bio-inspired technique to deal with continuous and discrete nonlinear optimization problems. The slave stage employed the matricial backward/forward power flow method for three-phase asymmetric networks. Numerical simulations in IEEE test feeders composed of 8, 25, and 37 nodes confirm the effectiveness of the SSA approach in finding efficient solutions regarding the expected grid power losses after optimal load phase-swapping. Numerical comparisons with the vortex search algorithm, the Chu & Beasley genetic algorithm, and the crow search algorithm demonstrate the effectiveness of the proposed methodology in dealing with the studied problem. All numerical validations were carried out in the MATLAB programming environment.","PeriodicalId":278060,"journal":{"name":"Revista UIS Ingenierías","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the SSA to the Optimal Phase-Swapping Problem in Three-Phase Asymmetric Networks\",\"authors\":\"Antonny Santiago Vargas-Beltrán, Oscar Mauricio Angarita-Santofimio, Oscar Danilo Montoya\",\"doi\":\"10.18273/revuin.v22n4-2023004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research addresses the optimal phase-balancing problem by applying a master-slave optimization methodology. The master stage defines the load connections per node using a discrete codification, while the slave stage evaluates each load configuration provided by the master stage via a three-phase power flow. For the master stage, the salp swarm algorithm (SSA) was selected, which is an efficient bio-inspired technique to deal with continuous and discrete nonlinear optimization problems. The slave stage employed the matricial backward/forward power flow method for three-phase asymmetric networks. Numerical simulations in IEEE test feeders composed of 8, 25, and 37 nodes confirm the effectiveness of the SSA approach in finding efficient solutions regarding the expected grid power losses after optimal load phase-swapping. Numerical comparisons with the vortex search algorithm, the Chu & Beasley genetic algorithm, and the crow search algorithm demonstrate the effectiveness of the proposed methodology in dealing with the studied problem. All numerical validations were carried out in the MATLAB programming environment.\",\"PeriodicalId\":278060,\"journal\":{\"name\":\"Revista UIS Ingenierías\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista UIS Ingenierías\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18273/revuin.v22n4-2023004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista UIS Ingenierías","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revuin.v22n4-2023004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用主从优化方法来解决最优相位平衡问题。主级使用离散编码定义每个节点的负载连接,而从级通过三相潮流评估主级提供的每个负载配置。在主阶段,选择了salp swarm算法(SSA),这是一种有效的处理连续和离散非线性优化问题的仿生技术。从级采用三相非对称电网的物质前向/后向潮流法。在由8、25和37个节点组成的IEEE测试馈线中进行的数值模拟证实了SSA方法在寻找最佳负载换相后预期电网功率损失的有效解决方案方面的有效性。数值比较与涡旋搜索算法,Chu &比斯利遗传算法和乌鸦搜索算法验证了所提方法处理所研究问题的有效性。所有数值验证均在MATLAB编程环境下进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the SSA to the Optimal Phase-Swapping Problem in Three-Phase Asymmetric Networks
This research addresses the optimal phase-balancing problem by applying a master-slave optimization methodology. The master stage defines the load connections per node using a discrete codification, while the slave stage evaluates each load configuration provided by the master stage via a three-phase power flow. For the master stage, the salp swarm algorithm (SSA) was selected, which is an efficient bio-inspired technique to deal with continuous and discrete nonlinear optimization problems. The slave stage employed the matricial backward/forward power flow method for three-phase asymmetric networks. Numerical simulations in IEEE test feeders composed of 8, 25, and 37 nodes confirm the effectiveness of the SSA approach in finding efficient solutions regarding the expected grid power losses after optimal load phase-swapping. Numerical comparisons with the vortex search algorithm, the Chu & Beasley genetic algorithm, and the crow search algorithm demonstrate the effectiveness of the proposed methodology in dealing with the studied problem. All numerical validations were carried out in the MATLAB programming environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信