m / g /1型马尔可夫链水平递增截断近似的总变差误差的次几何收敛公式

Q4 Decision Sciences
Katsuhisa Ouchi, Hiroyuki Masuyama
{"title":"m / g /1型马尔可夫链水平递增截断近似的总变差误差的次几何收敛公式","authors":"Katsuhisa Ouchi, Hiroyuki Masuyama","doi":"10.15807/jorsj.66.243","DOIUrl":null,"url":null,"abstract":"This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is usually used to implement Ramaswami's recursion for the stationary distribution in M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total-variation distance between the stationary distribution and its LI truncation approximation.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS\",\"authors\":\"Katsuhisa Ouchi, Hiroyuki Masuyama\",\"doi\":\"10.15807/jorsj.66.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is usually used to implement Ramaswami's recursion for the stationary distribution in M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total-variation distance between the stationary distribution and its LI truncation approximation.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/jorsj.66.243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.66.243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

研究M/G/1型马尔可夫链的水平递增截断近似。对于M/G/1型马尔可夫链中的平稳分布,通常采用LI截断近似来实现Ramaswami递归。本文的主要结果是平稳分布与其LI截断近似之间的总变差距离的一个亚几何收敛公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS
This paper considers the level-increment (LI) truncation approximation of M/G/1-type Markov chains. The LI truncation approximation is usually used to implement Ramaswami's recursion for the stationary distribution in M/G/1-type Markov chains. The main result of this paper is a subgeometric convergence formula for the total-variation distance between the stationary distribution and its LI truncation approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信