具有保凸度量参数化的严格凸二次规划的黎曼几何方法

Q4 Decision Sciences
Toshihiro Wada, Toshiyuki Ohtsuka
{"title":"具有保凸度量参数化的严格凸二次规划的黎曼几何方法","authors":"Toshihiro Wada, Toshiyuki Ohtsuka","doi":"10.15807/jorsj.66.219","DOIUrl":null,"url":null,"abstract":"In this study, we propose a new approach to strictly convex quadratic programming based on differential geometry. Broadly, our approach is an interior-point method. However, it can also be viewed as Newton's method on a Riemannian manifold on a set of interior points. In contrast to existing works on Newton's method on Riemannian manifolds, we introduce a parameterized metric and a retraction on the manifold, which are required to find a descent direction on the tangent space and update the solution on the manifold, respectively. The parameter of the metric is chosen at each iteration to preserve the local geodesic convexity of the objective function, while the retraction is designed to guarantee local convergence of the algorithm. The convergence rate is proven to be quadratic. Furthermore, we propose a modified algorithm emphasizing effective performance, which is numerically illustrated to be computationally as efficient as the primal-dual interior-point method, which has been widely used in practice. Our approach is also capable of warm start, which are preferable for model predictive control.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A RIEMANNIAN-GEOMETRICAL APPROACH TO STRICTLY CONVEX QUADRATIC PROGRAMMING WITH CONVEXITY-PRESERVING METRIC PARAMETERIZATION\",\"authors\":\"Toshihiro Wada, Toshiyuki Ohtsuka\",\"doi\":\"10.15807/jorsj.66.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we propose a new approach to strictly convex quadratic programming based on differential geometry. Broadly, our approach is an interior-point method. However, it can also be viewed as Newton's method on a Riemannian manifold on a set of interior points. In contrast to existing works on Newton's method on Riemannian manifolds, we introduce a parameterized metric and a retraction on the manifold, which are required to find a descent direction on the tangent space and update the solution on the manifold, respectively. The parameter of the metric is chosen at each iteration to preserve the local geodesic convexity of the objective function, while the retraction is designed to guarantee local convergence of the algorithm. The convergence rate is proven to be quadratic. Furthermore, we propose a modified algorithm emphasizing effective performance, which is numerically illustrated to be computationally as efficient as the primal-dual interior-point method, which has been widely used in practice. Our approach is also capable of warm start, which are preferable for model predictive control.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/jorsj.66.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/jorsj.66.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于微分几何的严格凸二次规划的新方法。广义地说,我们的方法是一种内点法。然而,它也可以看作是在一组内点上黎曼流形上的牛顿方法。相对于已有的黎曼流形上牛顿方法的研究,我们在黎曼流形上引入了一个参数化度量和一个回缩,这两个度量和回缩分别需要在切线空间上寻找下降方向和更新黎曼流形上的解。在每次迭代中选择度量参数以保持目标函数的局部测地线凸性,同时设计回缩以保证算法的局部收敛性。证明了该算法的收敛速度是二次的。此外,我们提出了一种改进的算法,强调有效的性能,数值表明该算法的计算效率与在实践中广泛使用的原对偶内点法相当。该方法还具有热启动功能,更适合模型预测控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A RIEMANNIAN-GEOMETRICAL APPROACH TO STRICTLY CONVEX QUADRATIC PROGRAMMING WITH CONVEXITY-PRESERVING METRIC PARAMETERIZATION
In this study, we propose a new approach to strictly convex quadratic programming based on differential geometry. Broadly, our approach is an interior-point method. However, it can also be viewed as Newton's method on a Riemannian manifold on a set of interior points. In contrast to existing works on Newton's method on Riemannian manifolds, we introduce a parameterized metric and a retraction on the manifold, which are required to find a descent direction on the tangent space and update the solution on the manifold, respectively. The parameter of the metric is chosen at each iteration to preserve the local geodesic convexity of the objective function, while the retraction is designed to guarantee local convergence of the algorithm. The convergence rate is proven to be quadratic. Furthermore, we propose a modified algorithm emphasizing effective performance, which is numerically illustrated to be computationally as efficient as the primal-dual interior-point method, which has been widely used in practice. Our approach is also capable of warm start, which are preferable for model predictive control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信