CADTrack:近对称物体方向消歧的指令与支持

Q1 Social Sciences
João Marcelo Evangelista Belo, Jon Wissing, Tiare Feuchtner, Kaj Grønbæk
{"title":"CADTrack:近对称物体方向消歧的指令与支持","authors":"João Marcelo Evangelista Belo, Jon Wissing, Tiare Feuchtner, Kaj Grønbæk","doi":"10.1145/3626462","DOIUrl":null,"url":null,"abstract":"Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the object orientation matters but may be hard to disambiguate with the naked eye. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches, which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack in a user study, comparing our tracking-based instructions to other methods to confirm the benefits of our approach in terms of preference and required effort.","PeriodicalId":36902,"journal":{"name":"Proceedings of the ACM on Human-Computer Interaction","volume":"42 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CADTrack: Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects\",\"authors\":\"João Marcelo Evangelista Belo, Jon Wissing, Tiare Feuchtner, Kaj Grønbæk\",\"doi\":\"10.1145/3626462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the object orientation matters but may be hard to disambiguate with the naked eye. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches, which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack in a user study, comparing our tracking-based instructions to other methods to confirm the benefits of our approach in terms of preference and required effort.\",\"PeriodicalId\":36902,\"journal\":{\"name\":\"Proceedings of the ACM on Human-Computer Interaction\",\"volume\":\"42 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Human-Computer Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3626462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

确定物体的正确方向对于完成组装和质量保证等任务至关重要。特别是,接近对称的物体可能需要仔细检查小的视觉特征,以消除其方向的歧义。我们提出了CADTrack,一个数字助理,为任务提供指导和支持,其中对象方向很重要,但可能很难用肉眼消除歧义。此外,我们提出了一个深度学习管道来跟踪近对称物体的方向。现有的方法需要标记数据集,涉及费力的数据采集和注释过程,CADTrack使用对象的数字模型来生成合成数据并训练卷积神经网络,与之相反。此外,我们扩展了Mask R-CNN的结构,增加了一个置信度预测分支,以避免误导方向引导引起的误差。我们在用户研究中评估CADTrack,将我们基于跟踪的指令与其他方法进行比较,以确认我们的方法在偏好和所需努力方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CADTrack: Instructions and Support for Orientation Disambiguation of Near-Symmetrical Objects
Determining the correct orientation of objects can be critical to succeed in tasks like assembly and quality assurance. In particular, near-symmetrical objects may require careful inspection of small visual features to disambiguate their orientation. We propose CADTrack, a digital assistant for providing instructions and support for tasks where the object orientation matters but may be hard to disambiguate with the naked eye. Additionally, we present a deep learning pipeline for tracking the orientation of near-symmetrical objects. In contrast to existing approaches, which require labeled datasets involving laborious data acquisition and annotation processes, CADTrack uses a digital model of the object to generate synthetic data and train a convolutional neural network. Furthermore, we extend the architecture of Mask R-CNN with a confidence prediction branch to avoid errors caused by misleading orientation guidance. We evaluate CADTrack in a user study, comparing our tracking-based instructions to other methods to confirm the benefits of our approach in terms of preference and required effort.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Human-Computer Interaction
Proceedings of the ACM on Human-Computer Interaction Social Sciences-Social Sciences (miscellaneous)
CiteScore
5.90
自引率
0.00%
发文量
257
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信