极坐标分解中的旋转矩阵和旋转角度

Stephen Ehidiamhen Uwamusi
{"title":"极坐标分解中的旋转矩阵和旋转角度","authors":"Stephen Ehidiamhen Uwamusi","doi":"10.34198/ejms.14124.063074","DOIUrl":null,"url":null,"abstract":"This paper aims at computing the rotation matrix and angles of rotations using Newton and Halley’s methods in the generalized polar decomposition. The method extends the techniques of Newton’s and Halley’s methods for iteratively finding the zeros of polynomial equation of single variable to matrix rotation valued problems. It calculates and estimates the eigenvalues using Chevbyshev’s iterative method while computing the rotation matrix. The sample problems were tested on a randomly generated matrix of order from the family of matrix market. Numerical examples are given to demonstrate the validity of this work.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotation Matrix and Angles of Rotation in the Polar Decomposition\",\"authors\":\"Stephen Ehidiamhen Uwamusi\",\"doi\":\"10.34198/ejms.14124.063074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at computing the rotation matrix and angles of rotations using Newton and Halley’s methods in the generalized polar decomposition. The method extends the techniques of Newton’s and Halley’s methods for iteratively finding the zeros of polynomial equation of single variable to matrix rotation valued problems. It calculates and estimates the eigenvalues using Chevbyshev’s iterative method while computing the rotation matrix. The sample problems were tested on a randomly generated matrix of order from the family of matrix market. Numerical examples are given to demonstrate the validity of this work.\",\"PeriodicalId\":482741,\"journal\":{\"name\":\"Earthline Journal of Mathematical Sciences\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthline Journal of Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34198/ejms.14124.063074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejms.14124.063074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用广义极分解中的牛顿和哈雷方法计算旋转矩阵和旋转角度。将牛顿法和哈雷法迭代求单变量多项式方程零点的方法推广到矩阵旋转值问题。在计算旋转矩阵的同时,利用切比雪夫迭代法计算和估计特征值。样本问题在矩阵市场族中随机生成的有序矩阵上进行检验。通过数值算例验证了本文工作的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotation Matrix and Angles of Rotation in the Polar Decomposition
This paper aims at computing the rotation matrix and angles of rotations using Newton and Halley’s methods in the generalized polar decomposition. The method extends the techniques of Newton’s and Halley’s methods for iteratively finding the zeros of polynomial equation of single variable to matrix rotation valued problems. It calculates and estimates the eigenvalues using Chevbyshev’s iterative method while computing the rotation matrix. The sample problems were tested on a randomly generated matrix of order from the family of matrix market. Numerical examples are given to demonstrate the validity of this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信