马拉雅拉姆手写字符识别使用CNN架构

Q3 Mathematics
Pranav P Nair, Ajay James, Philomina Simon, Bhagyasree P V
{"title":"马拉雅拉姆手写字符识别使用CNN架构","authors":"Pranav P Nair, Ajay James, Philomina Simon, Bhagyasree P V","doi":"10.52549/ijeei.v11i3.4829","DOIUrl":null,"url":null,"abstract":"The process of encoding an input text image into a machine-readable format is called optical character recognition (OCR). The difference in characteristics of each language makes it difficult to develop a universal method that will have high accuracy for all languages. A method that produces good results for one language may not necessarily produce the same results for another language. OCR for printed characters is easier than handwritten characters because of the uniformity that exists in printed characters. While conventional methods find it hard to improve the existing methods, Convolutional Neural Networks (CNN) has shown drastic improvement in classification and recognition of other languages. However, there is no OCR model using CNN for Malayalam characters. Our proposed system uses a new CNN architecture for feature extraction and softmax layer for classification of characters. This eliminates manual designing of features that is used in the conventional methods. P-ARTS Kayyezhuthu dataset is used for training the CNN and an accuracy of 99.75% is obtained for the testing dataset meanwhile a collection of 40 real time input images yielded an accuracy of 95%.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malayalam Handwritten Character Recognition using CNN Architecture\",\"authors\":\"Pranav P Nair, Ajay James, Philomina Simon, Bhagyasree P V\",\"doi\":\"10.52549/ijeei.v11i3.4829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of encoding an input text image into a machine-readable format is called optical character recognition (OCR). The difference in characteristics of each language makes it difficult to develop a universal method that will have high accuracy for all languages. A method that produces good results for one language may not necessarily produce the same results for another language. OCR for printed characters is easier than handwritten characters because of the uniformity that exists in printed characters. While conventional methods find it hard to improve the existing methods, Convolutional Neural Networks (CNN) has shown drastic improvement in classification and recognition of other languages. However, there is no OCR model using CNN for Malayalam characters. Our proposed system uses a new CNN architecture for feature extraction and softmax layer for classification of characters. This eliminates manual designing of features that is used in the conventional methods. P-ARTS Kayyezhuthu dataset is used for training the CNN and an accuracy of 99.75% is obtained for the testing dataset meanwhile a collection of 40 real time input images yielded an accuracy of 95%.\",\"PeriodicalId\":37618,\"journal\":{\"name\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52549/ijeei.v11i3.4829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

将输入文本图像编码为机器可读格式的过程称为光学字符识别(OCR)。每种语言特征的差异使得很难开发出一种对所有语言都具有高精度的通用方法。对一种语言产生良好结果的方法不一定对另一种语言产生相同的结果。打印字符的OCR比手写字符容易,因为打印字符存在一致性。在传统方法难以改进现有方法的情况下,卷积神经网络(CNN)在其他语言的分类和识别方面表现出了巨大的进步。然而,没有使用CNN的OCR模型来处理马拉雅拉姆语字符。我们提出的系统使用新的CNN架构进行特征提取,使用softmax层进行字符分类。这消除了传统方法中使用的手动设计功能。使用P-ARTS Kayyezhuthu数据集对CNN进行训练,测试数据集的准确率达到99.75%,同时对40张实时输入的图像进行采集,准确率达到95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malayalam Handwritten Character Recognition using CNN Architecture
The process of encoding an input text image into a machine-readable format is called optical character recognition (OCR). The difference in characteristics of each language makes it difficult to develop a universal method that will have high accuracy for all languages. A method that produces good results for one language may not necessarily produce the same results for another language. OCR for printed characters is easier than handwritten characters because of the uniformity that exists in printed characters. While conventional methods find it hard to improve the existing methods, Convolutional Neural Networks (CNN) has shown drastic improvement in classification and recognition of other languages. However, there is no OCR model using CNN for Malayalam characters. Our proposed system uses a new CNN architecture for feature extraction and softmax layer for classification of characters. This eliminates manual designing of features that is used in the conventional methods. P-ARTS Kayyezhuthu dataset is used for training the CNN and an accuracy of 99.75% is obtained for the testing dataset meanwhile a collection of 40 real time input images yielded an accuracy of 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Electrical Engineering and Informatics
Indonesian Journal of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
1.50
自引率
0.00%
发文量
56
期刊介绍: The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信