关于杨氏积定理的微局部版本

Pub Date : 2023-09-24 DOI:10.1007/s00229-023-01510-6
Claudio Dappiaggi, Paolo Rinaldi, Federico Sclavi
{"title":"关于杨氏积定理的微局部版本","authors":"Claudio Dappiaggi, Paolo Rinaldi, Federico Sclavi","doi":"10.1007/s00229-023-01510-6","DOIUrl":null,"url":null,"abstract":"Abstract A key result in distribution theory is Young’s product theorem which states that the product between two Hölder distributions $$u\\in \\mathcal {C}^\\alpha (\\mathbb {R}^d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $$v\\in \\mathcal {C}^\\beta (\\mathbb {R}^d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>β</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can be unambiguously defined if $$\\alpha +\\beta &gt;0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . We revisit the problem of multiplying two Hölder distributions from the viewpoint of microlocal analysis, using techniques proper of Sobolev wavefront set. This allows us to establish sufficient conditions which allow the multiplication of two Hölder distributions even when $$\\alpha +\\beta \\le 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On a microlocal version of Young’s product theorem\",\"authors\":\"Claudio Dappiaggi, Paolo Rinaldi, Federico Sclavi\",\"doi\":\"10.1007/s00229-023-01510-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A key result in distribution theory is Young’s product theorem which states that the product between two Hölder distributions $$u\\\\in \\\\mathcal {C}^\\\\alpha (\\\\mathbb {R}^d)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>α</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and $$v\\\\in \\\\mathcal {C}^\\\\beta (\\\\mathbb {R}^d)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mi>β</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can be unambiguously defined if $$\\\\alpha +\\\\beta &gt;0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . We revisit the problem of multiplying two Hölder distributions from the viewpoint of microlocal analysis, using techniques proper of Sobolev wavefront set. This allows us to establish sufficient conditions which allow the multiplication of two Hölder distributions even when $$\\\\alpha +\\\\beta \\\\le 0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mi>β</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-023-01510-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00229-023-01510-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

杨氏积定理是分布理论中的一个重要结果,它指出两个Hölder分布$$u\in \mathcal {C}^\alpha (\mathbb {R}^d)$$ u∈C α (R d)和$$v\in \mathcal {C}^\beta (\mathbb {R}^d)$$ v∈C β (R d)之间的积可以明确定义,如果$$\alpha +\beta >0$$ α + β &gt;0。我们从微局部分析的角度,利用索博列夫波前集的适当技术,重新讨论了两个Hölder分布的乘法问题。这允许我们建立充分条件,允许两个Hölder分布的乘法,即使$$\alpha +\beta \le 0$$ α + β≤0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On a microlocal version of Young’s product theorem
Abstract A key result in distribution theory is Young’s product theorem which states that the product between two Hölder distributions $$u\in \mathcal {C}^\alpha (\mathbb {R}^d)$$ u C α ( R d ) and $$v\in \mathcal {C}^\beta (\mathbb {R}^d)$$ v C β ( R d ) can be unambiguously defined if $$\alpha +\beta >0$$ α + β > 0 . We revisit the problem of multiplying two Hölder distributions from the viewpoint of microlocal analysis, using techniques proper of Sobolev wavefront set. This allows us to establish sufficient conditions which allow the multiplication of two Hölder distributions even when $$\alpha +\beta \le 0$$ α + β 0 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信