{"title":"U(1)A对称性破缺对介子质量差QCD修正的作用","authors":"Mahammad Sabir Ali, Chowdhury Aminul Islam, Rishi Sharma","doi":"10.1088/1361-6471/acf9bc","DOIUrl":null,"url":null,"abstract":"Abstract The charged and neutral pion mass difference can be attributed to both the quantum electrodynamics and QCD contributions. The current quark mass difference (Δ m ) is the source of the QCD contribution. Here, in a two-flavour non-local Nambu–Jona-Lasinio model, we try to estimate the QCD contribution. Interestingly, we find that the strength of the <?CDATA $U{\\left(1\\right)}_{A}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mi>U</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=\")\" open=\"(\"> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> </mml:msub> </mml:math> symmetry-breaking parameter c plays a crucial role in obtaining the pion mass difference while intertwined with the current quark mass difference. To obtain the QCD contribution for the pion mass difference, we scan the parameter space in {Δ m , c }, and by comparing this with the existing results, we constrained the parameter space. Further, using a fitted value of c , we determine the allowed range for the Δ m in the model. The model estimated Δ m ranges enable us to extract the chiral perturbation theory low energy constant, l 7 and verify the dependence of the pion mass difference on Δ m . We also find out its dependence on c —it increases with the decreasing value of c , i.e. toward an axial anomaly restored phase.","PeriodicalId":16770,"journal":{"name":"Journal of Physics G","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of <i>U(1)<sub>A</sub> </i> symmetry breaking in the QCD corrections to the pion mass difference\",\"authors\":\"Mahammad Sabir Ali, Chowdhury Aminul Islam, Rishi Sharma\",\"doi\":\"10.1088/1361-6471/acf9bc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The charged and neutral pion mass difference can be attributed to both the quantum electrodynamics and QCD contributions. The current quark mass difference (Δ m ) is the source of the QCD contribution. Here, in a two-flavour non-local Nambu–Jona-Lasinio model, we try to estimate the QCD contribution. Interestingly, we find that the strength of the <?CDATA $U{\\\\left(1\\\\right)}_{A}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mi>U</mml:mi> <mml:msub> <mml:mrow> <mml:mfenced close=\\\")\\\" open=\\\"(\\\"> <mml:mrow> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfenced> </mml:mrow> <mml:mrow> <mml:mi>A</mml:mi> </mml:mrow> </mml:msub> </mml:math> symmetry-breaking parameter c plays a crucial role in obtaining the pion mass difference while intertwined with the current quark mass difference. To obtain the QCD contribution for the pion mass difference, we scan the parameter space in {Δ m , c }, and by comparing this with the existing results, we constrained the parameter space. Further, using a fitted value of c , we determine the allowed range for the Δ m in the model. The model estimated Δ m ranges enable us to extract the chiral perturbation theory low energy constant, l 7 and verify the dependence of the pion mass difference on Δ m . We also find out its dependence on c —it increases with the decreasing value of c , i.e. toward an axial anomaly restored phase.\",\"PeriodicalId\":16770,\"journal\":{\"name\":\"Journal of Physics G\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/acf9bc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6471/acf9bc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
带电介子和中性介子的质量差可以归因于量子电动力学和QCD的贡献。当前夸克质量差(Δ m)是QCD贡献的来源。在这里,在一个双味非局部Nambu-Jona-Lasinio模型中,我们试图估计QCD的贡献。有趣的是,我们发现u1a对称破缺参数c的强度在获得介子质量差中起着至关重要的作用,并且与当前夸克质量差交织在一起。为了得到介子质量差的QCD贡献,我们扫描了{Δ m, c}中的参数空间,并通过与已有结果的比较,对参数空间进行了约束。此外,使用c的拟合值,我们确定模型中Δ m的允许范围。该模型估计的Δ m范围使我们能够提取手性微扰理论的低能量常数,并验证介子质量差与Δ m的依赖关系。我们还发现它对c的依赖性随着c值的减小而增大,即趋向于一个轴向异常恢复阶段。
The role of U(1)A symmetry breaking in the QCD corrections to the pion mass difference
Abstract The charged and neutral pion mass difference can be attributed to both the quantum electrodynamics and QCD contributions. The current quark mass difference (Δ m ) is the source of the QCD contribution. Here, in a two-flavour non-local Nambu–Jona-Lasinio model, we try to estimate the QCD contribution. Interestingly, we find that the strength of the U1A symmetry-breaking parameter c plays a crucial role in obtaining the pion mass difference while intertwined with the current quark mass difference. To obtain the QCD contribution for the pion mass difference, we scan the parameter space in {Δ m , c }, and by comparing this with the existing results, we constrained the parameter space. Further, using a fitted value of c , we determine the allowed range for the Δ m in the model. The model estimated Δ m ranges enable us to extract the chiral perturbation theory low energy constant, l 7 and verify the dependence of the pion mass difference on Δ m . We also find out its dependence on c —it increases with the decreasing value of c , i.e. toward an axial anomaly restored phase.