复合系统的格里森定理

Markus Frembs, Andreas Döring
{"title":"复合系统的格里森定理","authors":"Markus Frembs, Andreas Döring","doi":"10.1088/1751-8121/acfbcb","DOIUrl":null,"url":null,"abstract":"Abstract Gleason’s theorem (Gleason 1957 J. Math. Mech. 6 885) is an important result in the foundations of quantum mechanics, where it justifies the Born rule as a mathematical consequence of the quantum formalism. Formally, it presents a key insight into the projective geometry of Hilbert spaces, showing that finitely additive measures on the projection lattice <?CDATA $\\mathcal{P}(\\mathcal{H})$?> extend to positive linear functionals on the algebra of bounded operators <?CDATA $\\mathcal{B}(\\mathcal{H})$?> . Over many years, and by the effort of various authors, the theorem has been broadened in its scope from type I to arbitrary von Neumann algebras (without type <?CDATA $\\text{I}_2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:msub> <mml:mtext>I</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:math> factors). Here, we prove a generalisation of Gleason’s theorem to composite systems. To this end, we strengthen the original result in two ways: first, we extend its scope to dilations in the sense of Naimark (1943 Dokl. Akad. Sci. SSSR 41 359) and Stinespring (1955 Proc. Am. Math. Soc. 6 211) and second, we require consistency with respect to dynamical correspondences on the respective (local) algebras in the composition (Alfsen and Shultz 1998 Commun. Math. Phys. 194 87). We show that neither of these conditions changes the result in the single system case, yet both are necessary to obtain a generalisation to bipartite systems.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gleason’s theorem for composite systems\",\"authors\":\"Markus Frembs, Andreas Döring\",\"doi\":\"10.1088/1751-8121/acfbcb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Gleason’s theorem (Gleason 1957 J. Math. Mech. 6 885) is an important result in the foundations of quantum mechanics, where it justifies the Born rule as a mathematical consequence of the quantum formalism. Formally, it presents a key insight into the projective geometry of Hilbert spaces, showing that finitely additive measures on the projection lattice <?CDATA $\\\\mathcal{P}(\\\\mathcal{H})$?> extend to positive linear functionals on the algebra of bounded operators <?CDATA $\\\\mathcal{B}(\\\\mathcal{H})$?> . Over many years, and by the effort of various authors, the theorem has been broadened in its scope from type I to arbitrary von Neumann algebras (without type <?CDATA $\\\\text{I}_2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:msub> <mml:mtext>I</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:math> factors). Here, we prove a generalisation of Gleason’s theorem to composite systems. To this end, we strengthen the original result in two ways: first, we extend its scope to dilations in the sense of Naimark (1943 Dokl. Akad. Sci. SSSR 41 359) and Stinespring (1955 Proc. Am. Math. Soc. 6 211) and second, we require consistency with respect to dynamical correspondences on the respective (local) algebras in the composition (Alfsen and Shultz 1998 Commun. Math. Phys. 194 87). We show that neither of these conditions changes the result in the single system case, yet both are necessary to obtain a generalisation to bipartite systems.\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfbcb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfbcb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

格里森定理(Gleason 1957)。力学。6885)是量子力学基础中的一个重要结果,它证明了玻恩法则是量子形式主义的一个数学结果。形式上,它提出了对希尔伯特空间的射影几何的一个重要见解,表明在投影格上的有限加性测度扩展到有界算子代数上的正线性泛函。多年来,在许多作者的努力下,这个定理的范围已经从I型扩展到任意的冯诺依曼代数(没有I型2因子)。本文证明了格里森定理在复合系统中的推广。为此,我们以两种方式加强了原始结果:首先,我们将其范围扩展到Naimark (1943 Dokl)意义上的扩张。Akad。科学。SSSR 41 359)和《春天》(1955 Proc. Am。数学。Soc. 6 211),其次,我们需要关于组成(Alfsen和Shultz 1998 common)中各自(局部)代数上的动态对应的一致性。数学。物理学报,1994,87)。我们证明了这两个条件都不能改变单系统情况下的结果,但是这两个条件对于推广到二部系统是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gleason’s theorem for composite systems
Abstract Gleason’s theorem (Gleason 1957 J. Math. Mech. 6 885) is an important result in the foundations of quantum mechanics, where it justifies the Born rule as a mathematical consequence of the quantum formalism. Formally, it presents a key insight into the projective geometry of Hilbert spaces, showing that finitely additive measures on the projection lattice extend to positive linear functionals on the algebra of bounded operators . Over many years, and by the effort of various authors, the theorem has been broadened in its scope from type I to arbitrary von Neumann algebras (without type I 2 factors). Here, we prove a generalisation of Gleason’s theorem to composite systems. To this end, we strengthen the original result in two ways: first, we extend its scope to dilations in the sense of Naimark (1943 Dokl. Akad. Sci. SSSR 41 359) and Stinespring (1955 Proc. Am. Math. Soc. 6 211) and second, we require consistency with respect to dynamical correspondences on the respective (local) algebras in the composition (Alfsen and Shultz 1998 Commun. Math. Phys. 194 87). We show that neither of these conditions changes the result in the single system case, yet both are necessary to obtain a generalisation to bipartite systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信