{"title":"具有分形维数的正则分形函数的局部结构","authors":"Q. Zhang, L. J. Lu","doi":"10.1142/s0218348x23501189","DOIUrl":null,"url":null,"abstract":"In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":"9 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS\",\"authors\":\"Q. Zhang, L. J. Lu\",\"doi\":\"10.1142/s0218348x23501189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.\",\"PeriodicalId\":55144,\"journal\":{\"name\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals-Complex Geometry Patterns and Scaling in Nature and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501189\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS
In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.