{"title":"具有分形维数的正则分形函数的局部结构","authors":"Q. Zhang, L. J. Lu","doi":"10.1142/s0218348x23501189","DOIUrl":null,"url":null,"abstract":"In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS\",\"authors\":\"Q. Zhang, L. J. Lu\",\"doi\":\"10.1142/s0218348x23501189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501189\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501189","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
REMARKS ON THE LOCAL STRUCTURE OF REGULAR FRACTAL FUNCTIONS WITH FRACTAL DIMENSIONS
In this paper, we have explored the local structure and fractal characteristics of fractal functions with certain fractal dimensions. The conclusion that points with inconsistent oscillation amplitudes with the upper Box dimension of the corresponding fractal functions have been proved to be nowhere dense. This will play an important supporting role in exploring the fractal dimension estimation of the combination of fractal functions.