Odleiv Olesen, Håkon G. Rueslåtten, Jasmin Schönenberger, Morten Smelror, Roelant van der Lelij, Bjørn Eskil Larsen, Lars Olsen, Vikas Baranwal, Arne Bjørlykke, Marco Brönner, Jomar Gellein, Jan Steinar Rønning
{"title":"挪威中部地貌的侏罗纪遗产","authors":"Odleiv Olesen, Håkon G. Rueslåtten, Jasmin Schönenberger, Morten Smelror, Roelant van der Lelij, Bjørn Eskil Larsen, Lars Olsen, Vikas Baranwal, Arne Bjørlykke, Marco Brönner, Jomar Gellein, Jan Steinar Rønning","doi":"10.17850/njg103-3-2","DOIUrl":null,"url":null,"abstract":"The age and formation of the Scandinavian mountains and the Norwegian strandflat have long been the subject of dispute. Some researchers argue that the present-day mountains are remains of the Caledonian orogen while others claim that the Caledonian nappes after erosion were buried by Mesozoic sediments and subsequently exhumed. In order to clarify these issues, we have studied remains of chemically weathered rocks (saprolites) from the coast to the interior of central Norway. The multidisciplinary study includes digital topography, electrical resistivity tomography (ERT), XRD, XRF, palynological analyses and K–Ar dating of samples from outcrops, trenches and core drilling. The coastal areas are dominated by an outer strandflat and an inner joint-valley landscape, while the interior is characterised by smoother landscapes referred to as palaeo-surfaces. Remnants of pre–Tertiary weathering occur in the joint valley landscape as well as on the palaeo-surfaces. The saprolites are found within fault- and fracture-zones and at depths exceeding 50 m in drillholes. It is suggested that the old saprolites were strongly eroded along the coast and in the fjords and valleys such as in Orkdalen and Sunndalen. K–Ar dating of mainland clay alteration most frequently yielded Jurassic ages along a profile extending from the coast to the Dovrefjell mountains (c. 1400 m a.s.l.). The formation age of the smectite- and kaolinite-containing saprolites seems to be almost contemporaneous along this profile implying that the entire area was subject to weathering in a warm and humid climate, such as prevailed during the Late Triassic and Jurassic. Palynological residues containing thermally altered Triassic and Jurassic pollen and spores in the clay-infected bedrock lend support to the saprolite interpretation. The Mesozoic landscape in central Norway was consequently shaped by uplift and deep weathering in the Jurassic. The entire Trøndelag county was most likely covered by Mesozoic sedimentary rocks until Cenozoic exhumation. The landscape was modified by Cenozoic tectonic uplift and erosion, and finally reworked by Pleistocene glacial erosion. We therefore conclude that both the observed saprolites and the shape of the present-day landscape in central Norway give a strong impression of the original Jurassic weathering surface.","PeriodicalId":49741,"journal":{"name":"Norwegian Journal of Geology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jurassic heritance of the geomorphology in Mid Norway\",\"authors\":\"Odleiv Olesen, Håkon G. Rueslåtten, Jasmin Schönenberger, Morten Smelror, Roelant van der Lelij, Bjørn Eskil Larsen, Lars Olsen, Vikas Baranwal, Arne Bjørlykke, Marco Brönner, Jomar Gellein, Jan Steinar Rønning\",\"doi\":\"10.17850/njg103-3-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The age and formation of the Scandinavian mountains and the Norwegian strandflat have long been the subject of dispute. Some researchers argue that the present-day mountains are remains of the Caledonian orogen while others claim that the Caledonian nappes after erosion were buried by Mesozoic sediments and subsequently exhumed. In order to clarify these issues, we have studied remains of chemically weathered rocks (saprolites) from the coast to the interior of central Norway. The multidisciplinary study includes digital topography, electrical resistivity tomography (ERT), XRD, XRF, palynological analyses and K–Ar dating of samples from outcrops, trenches and core drilling. The coastal areas are dominated by an outer strandflat and an inner joint-valley landscape, while the interior is characterised by smoother landscapes referred to as palaeo-surfaces. Remnants of pre–Tertiary weathering occur in the joint valley landscape as well as on the palaeo-surfaces. The saprolites are found within fault- and fracture-zones and at depths exceeding 50 m in drillholes. It is suggested that the old saprolites were strongly eroded along the coast and in the fjords and valleys such as in Orkdalen and Sunndalen. K–Ar dating of mainland clay alteration most frequently yielded Jurassic ages along a profile extending from the coast to the Dovrefjell mountains (c. 1400 m a.s.l.). The formation age of the smectite- and kaolinite-containing saprolites seems to be almost contemporaneous along this profile implying that the entire area was subject to weathering in a warm and humid climate, such as prevailed during the Late Triassic and Jurassic. Palynological residues containing thermally altered Triassic and Jurassic pollen and spores in the clay-infected bedrock lend support to the saprolite interpretation. The Mesozoic landscape in central Norway was consequently shaped by uplift and deep weathering in the Jurassic. The entire Trøndelag county was most likely covered by Mesozoic sedimentary rocks until Cenozoic exhumation. The landscape was modified by Cenozoic tectonic uplift and erosion, and finally reworked by Pleistocene glacial erosion. We therefore conclude that both the observed saprolites and the shape of the present-day landscape in central Norway give a strong impression of the original Jurassic weathering surface.\",\"PeriodicalId\":49741,\"journal\":{\"name\":\"Norwegian Journal of Geology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Norwegian Journal of Geology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17850/njg103-3-2\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Norwegian Journal of Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17850/njg103-3-2","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Jurassic heritance of the geomorphology in Mid Norway
The age and formation of the Scandinavian mountains and the Norwegian strandflat have long been the subject of dispute. Some researchers argue that the present-day mountains are remains of the Caledonian orogen while others claim that the Caledonian nappes after erosion were buried by Mesozoic sediments and subsequently exhumed. In order to clarify these issues, we have studied remains of chemically weathered rocks (saprolites) from the coast to the interior of central Norway. The multidisciplinary study includes digital topography, electrical resistivity tomography (ERT), XRD, XRF, palynological analyses and K–Ar dating of samples from outcrops, trenches and core drilling. The coastal areas are dominated by an outer strandflat and an inner joint-valley landscape, while the interior is characterised by smoother landscapes referred to as palaeo-surfaces. Remnants of pre–Tertiary weathering occur in the joint valley landscape as well as on the palaeo-surfaces. The saprolites are found within fault- and fracture-zones and at depths exceeding 50 m in drillholes. It is suggested that the old saprolites were strongly eroded along the coast and in the fjords and valleys such as in Orkdalen and Sunndalen. K–Ar dating of mainland clay alteration most frequently yielded Jurassic ages along a profile extending from the coast to the Dovrefjell mountains (c. 1400 m a.s.l.). The formation age of the smectite- and kaolinite-containing saprolites seems to be almost contemporaneous along this profile implying that the entire area was subject to weathering in a warm and humid climate, such as prevailed during the Late Triassic and Jurassic. Palynological residues containing thermally altered Triassic and Jurassic pollen and spores in the clay-infected bedrock lend support to the saprolite interpretation. The Mesozoic landscape in central Norway was consequently shaped by uplift and deep weathering in the Jurassic. The entire Trøndelag county was most likely covered by Mesozoic sedimentary rocks until Cenozoic exhumation. The landscape was modified by Cenozoic tectonic uplift and erosion, and finally reworked by Pleistocene glacial erosion. We therefore conclude that both the observed saprolites and the shape of the present-day landscape in central Norway give a strong impression of the original Jurassic weathering surface.
期刊介绍:
The Norwegian Journal of Geology publishes high-quality, fully peer-review papers from all geoscientific disciplines. Papers are commonly based on regional studies and should emphasise the development of understanding of fundamental geological processes. More specialised papers can also be submitted, but should be written in a way that is easily understood by nonspecialists, and illustrate the progress being made within that specific topic in geosciences. We also encourage initiatives for thematic issues within the scope of the Journal.