{"title":"薛定谔-波普-波多尔斯基方程特征值问题解的存在性和渐近性","authors":"Lorena Soriano Hernandez, Gaetano Siciliano","doi":"10.58997/ejde.2023.66","DOIUrl":null,"url":null,"abstract":"We study the existence and multiplicity of solutions for the Schrodinger-Bopp-Podolsky system $$\\displaylines{ -\\Delta u + \\phi u = \\omega u \\quad\\text{ in } \\Omega \\cr a^2\\Delta^2\\phi-\\Delta \\phi = u^2 \\quad\\text{ in } \\Omega \\cr u=\\phi=\\Delta\\phi=0\\quad\\text{ on } \\partial\\Omega \\cr \\int_{\\Omega} u^2\\,dx =1 }$$ where \\(\\Omega\\) is an open bounded and smooth domain in \\(\\mathbb R^{3}\\), \\(a>0 \\) is the Bopp-Podolsky parameter. The unknowns are \\(u,\\phi:\\Omega\\to \\mathbb R\\) and \\(\\omega\\in\\mathbb R\\). By using variational methods we show that for any \\(a>0\\) there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrodinger-Poisson system, as \\(a\\to 0\\). For more information see https://ejde.math.txstate.edu/Volumes/2023/66/abstr.html","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Existence and asymptotic behavior of solutions to eigenvalue problems for Schrodinger-Bopp-Podolsky equations\",\"authors\":\"Lorena Soriano Hernandez, Gaetano Siciliano\",\"doi\":\"10.58997/ejde.2023.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence and multiplicity of solutions for the Schrodinger-Bopp-Podolsky system $$\\\\displaylines{ -\\\\Delta u + \\\\phi u = \\\\omega u \\\\quad\\\\text{ in } \\\\Omega \\\\cr a^2\\\\Delta^2\\\\phi-\\\\Delta \\\\phi = u^2 \\\\quad\\\\text{ in } \\\\Omega \\\\cr u=\\\\phi=\\\\Delta\\\\phi=0\\\\quad\\\\text{ on } \\\\partial\\\\Omega \\\\cr \\\\int_{\\\\Omega} u^2\\\\,dx =1 }$$ where \\\\(\\\\Omega\\\\) is an open bounded and smooth domain in \\\\(\\\\mathbb R^{3}\\\\), \\\\(a>0 \\\\) is the Bopp-Podolsky parameter. The unknowns are \\\\(u,\\\\phi:\\\\Omega\\\\to \\\\mathbb R\\\\) and \\\\(\\\\omega\\\\in\\\\mathbb R\\\\). By using variational methods we show that for any \\\\(a>0\\\\) there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrodinger-Poisson system, as \\\\(a\\\\to 0\\\\). For more information see https://ejde.math.txstate.edu/Volumes/2023/66/abstr.html\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2023.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58997/ejde.2023.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
我们研究了Schrodinger-Bopp-Podolsky系统$$\displaylines{ -\Delta u + \phi u = \omega u \quad\text{ in } \Omega \cr a^2\Delta^2\phi-\Delta \phi = u^2 \quad\text{ in } \Omega \cr u=\phi=\Delta\phi=0\quad\text{ on } \partial\Omega \cr \int_{\Omega} u^2\,dx =1 }$$的解的存在性和多重性,其中\(\Omega\)为\(\mathbb R^{3}\)中的开有界光滑域,\(a>0 \)为Bopp-Podolsky参数。未知数是\(u,\phi:\Omega\to \mathbb R\)和\(\omega\in\mathbb R\)。利用变分方法证明了对于任意\(a>0\)存在无穷多个能量发散且范数发散的解。我们证明了基态解收敛于相关的经典薛定谔-泊松系统的基态解,如\(a\to 0\)。欲了解更多信息,请参阅https://ejde.math.txstate.edu/Volumes/2023/66/abstr.html
Existence and asymptotic behavior of solutions to eigenvalue problems for Schrodinger-Bopp-Podolsky equations
We study the existence and multiplicity of solutions for the Schrodinger-Bopp-Podolsky system $$\displaylines{ -\Delta u + \phi u = \omega u \quad\text{ in } \Omega \cr a^2\Delta^2\phi-\Delta \phi = u^2 \quad\text{ in } \Omega \cr u=\phi=\Delta\phi=0\quad\text{ on } \partial\Omega \cr \int_{\Omega} u^2\,dx =1 }$$ where \(\Omega\) is an open bounded and smooth domain in \(\mathbb R^{3}\), \(a>0 \) is the Bopp-Podolsky parameter. The unknowns are \(u,\phi:\Omega\to \mathbb R\) and \(\omega\in\mathbb R\). By using variational methods we show that for any \(a>0\) there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrodinger-Poisson system, as \(a\to 0\). For more information see https://ejde.math.txstate.edu/Volumes/2023/66/abstr.html