弯曲非交换空间上Φ4矩阵模型的相变

IF 1.4 4区 物理与天体物理 Q3 PHYSICS, NUCLEAR
Dragan Prekrat, Dragana Rankovic, Neli Kristina Todorovic-Vasovic, Samuel Kovacik, Juraj Tekel
{"title":"弯曲非交换空间上Φ4矩阵模型的相变","authors":"Dragan Prekrat, Dragana Rankovic, Neli Kristina Todorovic-Vasovic, Samuel Kovacik, Juraj Tekel","doi":"10.1142/s0217751x23430029","DOIUrl":null,"url":null,"abstract":"In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.","PeriodicalId":50309,"journal":{"name":"International Journal of Modern Physics a","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transitions in a Φ<sup>4</sup> matrix model on a curved noncommutative space\",\"authors\":\"Dragan Prekrat, Dragana Rankovic, Neli Kristina Todorovic-Vasovic, Samuel Kovacik, Juraj Tekel\",\"doi\":\"10.1142/s0217751x23430029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.\",\"PeriodicalId\":50309,\"journal\":{\"name\":\"International Journal of Modern Physics a\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics a\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217751x23430029\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics a","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217751x23430029","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在这篇贡献中,我们总结了我们最近对Grosse-Wulkenhaar模型的相结构及其与重整化能力的联系的研究。它的作用包含一个特殊的项,将场与非交换背景空间的曲率耦合。我们首先分析了该模型的相位图及其三个相位:有序相位、无序相位和非交换条纹相位。然后,我们讨论了有效作用和有序到条纹过渡线的解析推导,以及与没有曲率的模型相比,所得到的表达式如何成功地解释了曲率引起的三点位移。这种移位还会导致条带阶段的移除,并使模型可重新规范化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase transitions in a Φ4 matrix model on a curved noncommutative space
In this contribution, we summarize our recent studies of the phase structure of the Grosse-Wulkenhaar model and its connection to renormalizability. Its action contains a special term that couples the field to the curvature of the noncommutative background space. We first analyze the numerically obtained phase diagram of the model and its three phases: the ordered, the disordered, and the noncommutative stripe phase. Afterward, we discuss the analytical derivation of the effective action and the ordered-to-stripe transition line, and how the obtained expression successfully explains the curvature-induced shift of the triple point compared to the model without curvature. This shift also causes the removal of the stripe phase and makes the model renormalizable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Modern Physics a
International Journal of Modern Physics a 物理-物理:核物理
CiteScore
3.00
自引率
12.50%
发文量
283
审稿时长
3 months
期刊介绍: Started in 1986, IJMPA has gained international repute as a high-quality scientific journal. It consists of important review articles and original papers covering the latest research developments in Particles and Fields, and selected topics intersecting with Gravitation and Cosmology. The journal also features articles of long-standing value and importance which can be vital to research into new unexplored areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信