{"title":"高温下钢筋混凝土柱的残余强度与裂纹扩展","authors":"Sara Saad Faraj, Hadi Naser Ghadhban Almaliki","doi":"10.48084/etasr.6263","DOIUrl":null,"url":null,"abstract":"In the present study, reinforced concrete columns with dimensions of 200×200×1200 mm were tested under static loading and high temperatures. In the experimental work, square cross-section columns with compressive strength of 28 MPa were tested up to failure. Mechanical properties such as compressive strength, were examined under static load and then under temperatures such as 500 and 800 °C. Column specimens with the same geometry and with concrete covers of 10 and 17 mm were also put under test. Mode of failure, ductility, stiffness, and energy dissipation for all tested specimens are discussed. The test results showed that the strength capacity of reinforced concrete columns was affected by the column cover. The increment in temperature led to a reduction in the strength-carrying capacity of the columns and increased the axial and lateral displacements. The static compressive strength was reduced by 36.84 and 48.81% when the applied temperature was 500 and 800 °C, respectively. The stiffness of the specimen with 17 mm cover was 29.27 and 46.86% less than that of 10 mm cover for axial and lateral displacement, respectively. Also, the specimen with 10 mm cover exhibited decreased energy dissipation by 1.69 and 12.54% for axial and lateral displacement.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual Strength and Crack Propagation of Reinforced Concrete Columns under High Temperatures\",\"authors\":\"Sara Saad Faraj, Hadi Naser Ghadhban Almaliki\",\"doi\":\"10.48084/etasr.6263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, reinforced concrete columns with dimensions of 200×200×1200 mm were tested under static loading and high temperatures. In the experimental work, square cross-section columns with compressive strength of 28 MPa were tested up to failure. Mechanical properties such as compressive strength, were examined under static load and then under temperatures such as 500 and 800 °C. Column specimens with the same geometry and with concrete covers of 10 and 17 mm were also put under test. Mode of failure, ductility, stiffness, and energy dissipation for all tested specimens are discussed. The test results showed that the strength capacity of reinforced concrete columns was affected by the column cover. The increment in temperature led to a reduction in the strength-carrying capacity of the columns and increased the axial and lateral displacements. The static compressive strength was reduced by 36.84 and 48.81% when the applied temperature was 500 and 800 °C, respectively. The stiffness of the specimen with 17 mm cover was 29.27 and 46.86% less than that of 10 mm cover for axial and lateral displacement, respectively. Also, the specimen with 10 mm cover exhibited decreased energy dissipation by 1.69 and 12.54% for axial and lateral displacement.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6263\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6263","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Residual Strength and Crack Propagation of Reinforced Concrete Columns under High Temperatures
In the present study, reinforced concrete columns with dimensions of 200×200×1200 mm were tested under static loading and high temperatures. In the experimental work, square cross-section columns with compressive strength of 28 MPa were tested up to failure. Mechanical properties such as compressive strength, were examined under static load and then under temperatures such as 500 and 800 °C. Column specimens with the same geometry and with concrete covers of 10 and 17 mm were also put under test. Mode of failure, ductility, stiffness, and energy dissipation for all tested specimens are discussed. The test results showed that the strength capacity of reinforced concrete columns was affected by the column cover. The increment in temperature led to a reduction in the strength-carrying capacity of the columns and increased the axial and lateral displacements. The static compressive strength was reduced by 36.84 and 48.81% when the applied temperature was 500 and 800 °C, respectively. The stiffness of the specimen with 17 mm cover was 29.27 and 46.86% less than that of 10 mm cover for axial and lateral displacement, respectively. Also, the specimen with 10 mm cover exhibited decreased energy dissipation by 1.69 and 12.54% for axial and lateral displacement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.