单指标模型的两类估计量之间的联系

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou
{"title":"单指标模型的两类估计量之间的联系","authors":"Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou","doi":"10.1111/stan.12329","DOIUrl":null,"url":null,"abstract":"Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"127 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Connections between two classes of estimators for single‐index models\",\"authors\":\"Weichao Yang, Xu Guo, Niwen Zhou, Changliang Zou\",\"doi\":\"10.1111/stan.12329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12329\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/stan.12329","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

单指标模型是一种非常流行且功能强大的半参数模型。作为对最大秩相关估计器的改进,[[spiapacite]]bib1[[/spiapacite]]提出了线性化最大秩相关估计器。我们证明了这个估计量与单指标模型的分布变换最小二乘估计量有一些有趣的联系。我们还提出了一个重标化的分布变换最小二乘估计量,当响应分布绝对连续时,它在数学上等同于线性化的最大秩相关估计量。尽管有一些重要的联系,但这两种评估过程在动机、解释和应用方面是不同的。我们将讨论这两种估计过程之间的一些差异。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Connections between two classes of estimators for single‐index models
Single‐index model is a very popular and powerful semiparametric model. As an improvement of the maximum rank correlation estimator, [[spiapacite]]bib1[[/spiapacite]] proposed the linearized maximum rank correlation estimator. We show that this estimator has some interesting connections with the distribution‐transformed least‐squares estimator for single‐index models. We also propose a rescaled distribution‐transformed least‐squares estimator, which is mathematically equivalent to the linearized maximum rank correlation estimator when the distribution of the response is absolutely continuous. Despite some nontrivial connections, the two estimation procedures are different in terms of motivations, interpretations, and applications. We discuss some of the differences between the two estimation procedures. This article is protected by copyright. All rights reserved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信