Dirac约束系统形式中的poincar - chetaev方程

Alexei A. Deriglazov
{"title":"Dirac约束系统形式中的poincar<s:1> - chetaev方程","authors":"Alexei A. Deriglazov","doi":"10.3390/particles6040059","DOIUrl":null,"url":null,"abstract":"We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is written in terms of an exponential of the Hamiltonian vector field.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Poincaré–Chetaev Equations in Dirac’s Formalism of Constrained Systems\",\"authors\":\"Alexei A. Deriglazov\",\"doi\":\"10.3390/particles6040059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is written in terms of an exponential of the Hamiltonian vector field.\",\"PeriodicalId\":75932,\"journal\":{\"name\":\"Inhaled particles\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inhaled particles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/particles6040059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inhaled particles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/particles6040059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在群流形上选取一类拉格朗日量,在相空间中引入非正则坐标,简化了泊松结构的构造,而无需显式地计算狄拉克括号。在SO(3)流形的情况下,这种形式的应用导致庞加莱姆-切塔耶夫方程。这些方程的通解是用哈密顿向量场的指数来表示的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré–Chetaev Equations in Dirac’s Formalism of Constrained Systems
We single out a class of Lagrangians on a group manifold, for which one can introduce non-canonical coordinates in the phase space, which simplify the construction of the Poisson structure without explicitly calculating the Dirac bracket. In the case of the SO(3) manifold, the application of this formalism leads to the Poincaré–Chetaev equations. The general solution to these equations is written in terms of an exponential of the Hamiltonian vector field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信