V. Sudheer Kumar Sistla Sistla, Surendra Kumar Bitra, Santhosh Chella
{"title":"单结砷化镓纳米线-锗太阳能电池的设计与光学性能","authors":"V. Sudheer Kumar Sistla Sistla, Surendra Kumar Bitra, Santhosh Chella","doi":"10.48084/etasr.6121","DOIUrl":null,"url":null,"abstract":"Solar cells are one of the most effective methods available for energy harvesting and are constructed from a variety of materials. In recent years, the use of novel materials for low-cost, high-efficiency photovoltaics has been one of the most exciting breakthroughs. This study conducted an in-depth investigation into the optical characteristics of GaAs nanowires on a Ge bottom cell. Geometric optimization of nanowires is necessary to increase solar cell performance metrics. The absorption efficiency per unit volume was considerably boosted over its traditional bulk and thin-film counterparts as a result of inherent antireflection, intensive stimulation of resonant modes, and optical antenna effects. A 3D FDTD framework was used to acquire optical properties and incorporate numerical values. Under typical AM 1.5G illumination, the diameter of GaAs nanowires was optimized to 170 nm.","PeriodicalId":11826,"journal":{"name":"Engineering, Technology & Applied Science Research","volume":"23 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Optical Performance of a Single-Junction GaAs Nanowire-Ge Solar Cell\",\"authors\":\"V. Sudheer Kumar Sistla Sistla, Surendra Kumar Bitra, Santhosh Chella\",\"doi\":\"10.48084/etasr.6121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar cells are one of the most effective methods available for energy harvesting and are constructed from a variety of materials. In recent years, the use of novel materials for low-cost, high-efficiency photovoltaics has been one of the most exciting breakthroughs. This study conducted an in-depth investigation into the optical characteristics of GaAs nanowires on a Ge bottom cell. Geometric optimization of nanowires is necessary to increase solar cell performance metrics. The absorption efficiency per unit volume was considerably boosted over its traditional bulk and thin-film counterparts as a result of inherent antireflection, intensive stimulation of resonant modes, and optical antenna effects. A 3D FDTD framework was used to acquire optical properties and incorporate numerical values. Under typical AM 1.5G illumination, the diameter of GaAs nanowires was optimized to 170 nm.\",\"PeriodicalId\":11826,\"journal\":{\"name\":\"Engineering, Technology & Applied Science Research\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering, Technology & Applied Science Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48084/etasr.6121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering, Technology & Applied Science Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48084/etasr.6121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Design and Optical Performance of a Single-Junction GaAs Nanowire-Ge Solar Cell
Solar cells are one of the most effective methods available for energy harvesting and are constructed from a variety of materials. In recent years, the use of novel materials for low-cost, high-efficiency photovoltaics has been one of the most exciting breakthroughs. This study conducted an in-depth investigation into the optical characteristics of GaAs nanowires on a Ge bottom cell. Geometric optimization of nanowires is necessary to increase solar cell performance metrics. The absorption efficiency per unit volume was considerably boosted over its traditional bulk and thin-film counterparts as a result of inherent antireflection, intensive stimulation of resonant modes, and optical antenna effects. A 3D FDTD framework was used to acquire optical properties and incorporate numerical values. Under typical AM 1.5G illumination, the diameter of GaAs nanowires was optimized to 170 nm.