在目前的桥梁检测实践中减少不确定性的好处

IF 2.6 3区 工程技术 Q2 ENGINEERING, CIVIL
Francesca Poli, Mattia Francesco Bado, Luca Possidente, Daniele Zonta
{"title":"在目前的桥梁检测实践中减少不确定性的好处","authors":"Francesca Poli, Mattia Francesco Bado, Luca Possidente, Daniele Zonta","doi":"10.1080/15732479.2023.2265909","DOIUrl":null,"url":null,"abstract":"AbstractNumerous bridges worldwide have surpassed their service-life. To ensure the user safety, visual inspections are commonly carried out with the consequent assignment of Defect Grades. On their basis, simplified risk evaluations and maintenance intervention prioritization are formulated. Per the inherent nature of visual inspections, these ones include two kinds of uncertainty: interpretation-related and representation-related one. If to attempt to reduce their influence in the inspective process, the former, being an intrinsic feature of inspections performed by humans, could not be tackled. The latter, instead, can be decreased on the basis of a novel semantics-based inspective methodology. On the grounds of a large set of real-life inspections outputs, the present article measures the inspection quality improvement following said uncertainty reduction. This was achieved through the Expected Utility Theory in terms of utility and costs. On the grounds of these two, a novel Uncertainty-induced Cost curve allows the assessment of the cost evolution as a function of the weight of the representation-related uncertainty. The proposed semantics-based inspective methodology represents an improvement over the current-day directly assigned condition grading one, thus improving the efficiency of structural reliability assessments. This leads to an improved prioritization of bridge maintenance interventions and to an increased user safety.Keywords: Bridgebridge maintenancestructural reliability assessmentdamage assessmentinspectionstructural safetyservice lifebridge inspection quality AcknowledgementsThe work presented in this paper was carried out under the research agreement between Autostrade per l’Italia (ASPI) and the University of Trento. This research has been supported also by Ministry of Education University and Research MIUR PON RI 2014-2020 Program (Project MITIGO, ARS01_00964), Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale ReLUIS Ponti 2021- 2022 ‘Implementation of provisions of DM 578/2020’, and DPC-ReLUIS 2022-2024 ‘Monitoring and satellite data’.Disclosure statementDaniele Zonta reports financial support was provided by University of Trento. Daniele Zonta reports a relationship with Government of Italy Ministry of Education University and Research that includes: funding grants. Daniele Zonta reports a relationship with Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale that includes funding grants.","PeriodicalId":49468,"journal":{"name":"Structure and Infrastructure Engineering","volume":"86 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benefits of decreasing the uncertainty in the current bridge inspection practice\",\"authors\":\"Francesca Poli, Mattia Francesco Bado, Luca Possidente, Daniele Zonta\",\"doi\":\"10.1080/15732479.2023.2265909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractNumerous bridges worldwide have surpassed their service-life. To ensure the user safety, visual inspections are commonly carried out with the consequent assignment of Defect Grades. On their basis, simplified risk evaluations and maintenance intervention prioritization are formulated. Per the inherent nature of visual inspections, these ones include two kinds of uncertainty: interpretation-related and representation-related one. If to attempt to reduce their influence in the inspective process, the former, being an intrinsic feature of inspections performed by humans, could not be tackled. The latter, instead, can be decreased on the basis of a novel semantics-based inspective methodology. On the grounds of a large set of real-life inspections outputs, the present article measures the inspection quality improvement following said uncertainty reduction. This was achieved through the Expected Utility Theory in terms of utility and costs. On the grounds of these two, a novel Uncertainty-induced Cost curve allows the assessment of the cost evolution as a function of the weight of the representation-related uncertainty. The proposed semantics-based inspective methodology represents an improvement over the current-day directly assigned condition grading one, thus improving the efficiency of structural reliability assessments. This leads to an improved prioritization of bridge maintenance interventions and to an increased user safety.Keywords: Bridgebridge maintenancestructural reliability assessmentdamage assessmentinspectionstructural safetyservice lifebridge inspection quality AcknowledgementsThe work presented in this paper was carried out under the research agreement between Autostrade per l’Italia (ASPI) and the University of Trento. This research has been supported also by Ministry of Education University and Research MIUR PON RI 2014-2020 Program (Project MITIGO, ARS01_00964), Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale ReLUIS Ponti 2021- 2022 ‘Implementation of provisions of DM 578/2020’, and DPC-ReLUIS 2022-2024 ‘Monitoring and satellite data’.Disclosure statementDaniele Zonta reports financial support was provided by University of Trento. Daniele Zonta reports a relationship with Government of Italy Ministry of Education University and Research that includes: funding grants. Daniele Zonta reports a relationship with Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale that includes funding grants.\",\"PeriodicalId\":49468,\"journal\":{\"name\":\"Structure and Infrastructure Engineering\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structure and Infrastructure Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15732479.2023.2265909\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure and Infrastructure Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15732479.2023.2265909","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

摘要世界上有许多桥梁已经超过了使用寿命。为了确保使用者的安全,通常会进行目视检查,并随后分配缺陷等级。在此基础上,制定了简化的风险评价和维修干预优先级。根据视觉检查的固有性质,这些不确定性包括两种类型:解释相关的不确定性和表征相关的不确定性。如果要设法减少它们在视察过程中的影响,前者作为人类视察的固有特征是无法解决的。相反,后者可以在一种新的基于语义的检查方法的基础上减少。基于大量现实生活中的检验输出,本文测量了上述不确定性降低后的检验质量改进。这是通过效用和成本方面的预期效用理论实现的。基于这两点,一种新的不确定性诱导成本曲线允许将成本演变作为表征相关不确定性权重的函数进行评估。所提出的基于语义的检查方法代表了当前直接分配条件等级1的改进,从而提高了结构可靠性评估的效率。这就提高了桥梁维护干预措施的优先级,提高了用户的安全性。关键词:桥梁维修,结构可靠性评估,损伤评估,结构安全,使用寿命,桥梁检测质量确认本文的工作是在意大利高速公路协会(ASPI)和特伦托大学的研究协议下进行的。本研究还得到了教育部大学和研究MIUR PON RI 2014-2020计划(项目MITIGO, ARS01_00964),意大利Sismica大学结构ReLUIS Ponti 2021- 2022“DM 578/2020条款的实施”和DPC-ReLUIS 2022-2024“监测和卫星数据”的支持。披露声明daniele Zonta报道,特伦托大学提供了资金支持。Daniele Zonta报道了意大利政府教育、大学和研究部的关系,其中包括:资助。Daniele Zonta报道了与德国科学与结构大学联合研究实验室的关系,包括资助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benefits of decreasing the uncertainty in the current bridge inspection practice
AbstractNumerous bridges worldwide have surpassed their service-life. To ensure the user safety, visual inspections are commonly carried out with the consequent assignment of Defect Grades. On their basis, simplified risk evaluations and maintenance intervention prioritization are formulated. Per the inherent nature of visual inspections, these ones include two kinds of uncertainty: interpretation-related and representation-related one. If to attempt to reduce their influence in the inspective process, the former, being an intrinsic feature of inspections performed by humans, could not be tackled. The latter, instead, can be decreased on the basis of a novel semantics-based inspective methodology. On the grounds of a large set of real-life inspections outputs, the present article measures the inspection quality improvement following said uncertainty reduction. This was achieved through the Expected Utility Theory in terms of utility and costs. On the grounds of these two, a novel Uncertainty-induced Cost curve allows the assessment of the cost evolution as a function of the weight of the representation-related uncertainty. The proposed semantics-based inspective methodology represents an improvement over the current-day directly assigned condition grading one, thus improving the efficiency of structural reliability assessments. This leads to an improved prioritization of bridge maintenance interventions and to an increased user safety.Keywords: Bridgebridge maintenancestructural reliability assessmentdamage assessmentinspectionstructural safetyservice lifebridge inspection quality AcknowledgementsThe work presented in this paper was carried out under the research agreement between Autostrade per l’Italia (ASPI) and the University of Trento. This research has been supported also by Ministry of Education University and Research MIUR PON RI 2014-2020 Program (Project MITIGO, ARS01_00964), Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale ReLUIS Ponti 2021- 2022 ‘Implementation of provisions of DM 578/2020’, and DPC-ReLUIS 2022-2024 ‘Monitoring and satellite data’.Disclosure statementDaniele Zonta reports financial support was provided by University of Trento. Daniele Zonta reports a relationship with Government of Italy Ministry of Education University and Research that includes: funding grants. Daniele Zonta reports a relationship with Consorzio della Rete dei Laboratori Universitari di Ingegneria Sismica e Strutturale that includes funding grants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structure and Infrastructure Engineering
Structure and Infrastructure Engineering 工程技术-工程:机械
CiteScore
9.50
自引率
8.10%
发文量
131
审稿时长
5.3 months
期刊介绍: Structure and Infrastructure Engineering - Maintenance, Management, Life-Cycle Design and Performance is an international Journal dedicated to recent advances in maintenance, management and life-cycle performance of a wide range of infrastructures, such as: buildings, bridges, dams, railways, underground constructions, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power plants, airplanes and other types of structures including aerospace and automotive structures. The Journal presents research and developments on the most advanced technologies for analyzing, predicting and optimizing infrastructure performance. The main gaps to be filled are those between researchers and practitioners in maintenance, management and life-cycle performance of infrastructure systems, and those between professionals working on different types of infrastructures. To this end, the journal will provide a forum for a broad blend of scientific, technical and practical papers. The journal is endorsed by the International Association for Life-Cycle Civil Engineering ( IALCCE) and the International Association for Bridge Maintenance and Safety ( IABMAS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信