时空分数阶Zoomeron微分方程的孤子解

IF 0.1 Q4 MATHEMATICS, APPLIED
Hamood Ur Rehman, Muhammad Imran Asjad, Ifrah Iqbal, Ali Akgül
{"title":"时空分数阶Zoomeron微分方程的孤子解","authors":"Hamood Ur Rehman, Muhammad Imran Asjad, Ifrah Iqbal, Ali Akgül","doi":"10.1504/ijans.2023.133734","DOIUrl":null,"url":null,"abstract":"In the present work, Sardar subequation method (SSM) is exerted for seeking exact solutions of (2 + 1)-dimensional space-time fractional Zoomeron equation (FZE) in terms of conformable derivative (CD). The conformable derivative has much more capability than Riemann-Liouville and caputo derivative in solving the nonlinear fractional differential equation. The proposed method is extremely simple and very effective for finding exact solutions and then extracting solitons for the model. Bright, dark, singular, periodic singular and bright-dark hybrid soliton solutions are retrieved. Appropriate constraints are chosen for the obtained solitons to guarantee their existence. Moreover, from some obtained solutions, we draw its two-dimensional, contour and three-dimensional graphs by taking suitable values of parameters and then compare these graphs by changing the values of conformable derivative.","PeriodicalId":53168,"journal":{"name":"International Journal of Applied Nonlinear Science","volume":"104 1","pages":"0"},"PeriodicalIF":0.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton solutions of space-time fractional Zoomeron differential equation\",\"authors\":\"Hamood Ur Rehman, Muhammad Imran Asjad, Ifrah Iqbal, Ali Akgül\",\"doi\":\"10.1504/ijans.2023.133734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, Sardar subequation method (SSM) is exerted for seeking exact solutions of (2 + 1)-dimensional space-time fractional Zoomeron equation (FZE) in terms of conformable derivative (CD). The conformable derivative has much more capability than Riemann-Liouville and caputo derivative in solving the nonlinear fractional differential equation. The proposed method is extremely simple and very effective for finding exact solutions and then extracting solitons for the model. Bright, dark, singular, periodic singular and bright-dark hybrid soliton solutions are retrieved. Appropriate constraints are chosen for the obtained solitons to guarantee their existence. Moreover, from some obtained solutions, we draw its two-dimensional, contour and three-dimensional graphs by taking suitable values of parameters and then compare these graphs by changing the values of conformable derivative.\",\"PeriodicalId\":53168,\"journal\":{\"name\":\"International Journal of Applied Nonlinear Science\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Nonlinear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijans.2023.133734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijans.2023.133734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Sardar子方程法(SSM)求(2 + 1)维时空分数阶Zoomeron方程(FZE)的符合导数(CD)的精确解。适形导数在求解非线性分数阶微分方程方面具有比Riemann-Liouville和caputo导数更强的能力。该方法非常简单,可以有效地求出模型的精确解并提取孤子。检索了亮孤子解、暗孤子解、奇异孤子解、周期奇异孤子解和明暗混合孤子解。对得到的孤子选择适当的约束条件以保证其存在性。并根据得到的一些解,选取合适的参数值,绘制出其二维、等高线和三维图形,通过改变共形导数的值,对这些图形进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton solutions of space-time fractional Zoomeron differential equation
In the present work, Sardar subequation method (SSM) is exerted for seeking exact solutions of (2 + 1)-dimensional space-time fractional Zoomeron equation (FZE) in terms of conformable derivative (CD). The conformable derivative has much more capability than Riemann-Liouville and caputo derivative in solving the nonlinear fractional differential equation. The proposed method is extremely simple and very effective for finding exact solutions and then extracting solitons for the model. Bright, dark, singular, periodic singular and bright-dark hybrid soliton solutions are retrieved. Appropriate constraints are chosen for the obtained solitons to guarantee their existence. Moreover, from some obtained solutions, we draw its two-dimensional, contour and three-dimensional graphs by taking suitable values of parameters and then compare these graphs by changing the values of conformable derivative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
71.40%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信